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Kolmogorov Law for Statistically Stationary Turbulence:
Application to High-Rayleigh-Number Benard Convection
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The Kolmogorov relation for the third-order moments of the velocity differences is generalized for the
case of statistically steady turbulence and applied to the Benard convection problem. The predicted tem-
perature and velocity spectra are Ez = k ' and E = k ', respectively. At the smaller scales, in the
dissipation range of the temperature fluctuations, the Kolmogorov range where most of the energy is dis-
sipated is predicted. The new set of scaling exponents, which can be observed in the experiments in the
small-aspect-ratio convection cells, is derived.

PACS numbers: 47.25.Cg

In 1941, Kolmogorov derived his celebrated relation for
the third-order structure functions in decaying homo-
geneous and isotropic turbulence [1]:

S3~([u(X)—u(X+x)] )~ ——ex+6v, (1)4 dSz
5 dx

where u(X) is the x component of the velocity field v, x
is the displacement in the x direction, and e=v((Bv;/
Bxj) )-1. The correlation function is Sz =([u(X)
—u(X+x)] ). The relation (1) is the consequence of
the Navier-Stokes equations for an incompressible fluid,
and the dissipation rate e in the Kolmogorov derivation is
defined as (Bv /Bt) = —2e. In a statistically steady flow
driven by the force f, (dv /dt) =0= —2e+2(f v) and, in

general, the Kolmogorov relation (1) must be modified.
The Navier-Stokes equations driven by the force f are

2 .

(2)
x& x; Bxj

with V v=0. For simplicity we consider a statistically
isotropic force so that (f,v, ) =(fpvji) for aAP. In this pa-
per the summation over the Greek indices is not assumed.

Applying the Kolmogorov derivation, the details of which
are given in Refs. [1-3],to Eq. (2), the following relation
is readily obtained:

Bx'S3
+(u X) X+x))+(u(X+x) (X))

Taking into account that (u(x)f(x)) =
3 e expression (4)

can be recast in a more familiar form:

~x BSz
Si = ——ex+ y (Aud f)dy+6vx4"o Bx

(5)

where hf -f(X) f(X+x—). This relation is exact. It is
clear that if the energy source acts at the largest scales
only, so that the Fourier transform f(k) =0 for k & kv

0, then relations (5) and (1) are identical for small

enough values of the displacement x. However, if the
field f is correlated with v at all scales, then relation (1)
is grossly incorrect.

In what follows the generalized Kolmogorov relation
(5) will be applied to the problem of Benard convection
between infinite plates separated by a distance L. The
mean temperature difference between top and bottom
plates is h, 0=2% The equations of motion for the veloci-

ty field v and for the temperature fluctuations T from the
mean temperature profile 8(z) in the convection cell are

Bvi Bvi Bp 8 vi
2 .

+vj = — +v
&

+agTbi3,
xj xi Bxi~

(6)

BT+ BT BzT+ 8 8 88
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(7)

S3=—

S2+6v

4 2 Be BSz
S3 = — Nx+ y (hv36T)dy— +2m

X Bz Bx

f( f(
Bx Here a is the thermal expansion coefficient and g is the

x 4 (3) gravitational acceleration. The mean temperature gra-
x4 Bx Bx dients in the parts of the cell outside the close-to-the-wall

where f is the x component of the force. Integrating (3) thermal boundary layer are very small. This allows us to
leads to assume that T(x,t) is a statistically isotropic and homo-

4[( (X)f(X+ ))+ ( (X+ )f(X)))d geneous process. In this part of the cell the scalar
4 gO

u y u y
dissipation rate 2N =2x'((BT/Bx;) ) = —2(v3T) 88/Bz.2 ——

8 Again, applying the procedure developed for the problem
(4) of a decaying passive scalar [2] to Eq. (7) we readilyx

I derive
Bx'S,'

[(v3(X)T(X+ x))+ (v3(X+x) T(X))] —, x ' =0,0 x' B BS2

2X Bz x Bx Bx

where S3 =(hu(AT) ), Sz =((hT) ), and hT =T(X) —T(X+x). This relation can be rewritten as
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r)L'; L) V,' BP L) v; I+ v + agTn; (n—; =1) . (9)
8x; t)x 3

Equation (9) is convenient since it enables us to use the
generalized Kolmogorov relation (S). However, the con-
clusions of the scaling theory developed belo~ do not

change if the exact expressions for the sources coming
from (6) are used. Thus, we have from (2), (6), and (9)

((Au) ) = Ex+ y (AuAT)dy+6v4 2ag '
4 QSZ

x' " |)x

(io)

Relations (8) and (10) will be used to develop a scaling
theory of convection in the limit v= K. =O. It will be
shown below that the first term on the right-hand side of
(10) is small at large enough scales. Thus, neglecting it

for the time being and taking into account that expression
(8) is dominated by the O(Nx) contributions, the follow-

ing scaling relations are readily derived: ((hT) ) = N "I

xg x ((hu) ) = g N x The correspon. ding
spectra are

zT=N"' "'k-'", z=N"' ""k-""
In the high-Ra flow the heat is mainly transferred by

the velocity fluctuations so that the eA'ective scale-
dependent transport coe%cients v(k;) = x(k;) and the
turbulent viscosity is estimated as [41

(k) = lE(k)/k] '"= N'"g'"k -"-' (i 2)

This leads to an important conclusion: The scalar dissi-

pation rate N = x fo'ET(k)k dk =x(k) fo ET(k)k dk
=const is scale independent. This means that in thermal
convection the flux of (T ) but not that of energy is con-
stant in the wave-number space. Substituting the above
estimates into (7) the expression for the dissipation scale

Expression (8) is an exact consequence of Eq. (7) in

the part of the cell outside the thermal boundary layer,
adjacent to the top and bottom plates. We assume that
there the small-scale turbulence is isotropic and homo-

geneous. On first glance this assumption cannot be plau-
sible since, as seen from Eq. (6), the energy is pumped
into the z component of the velocity field only. However,

pressure tends to rapidly redistribute the energy between

different components of the velocity field leading to the
isotropization of the small-scale turbulence. It follows

from Eq. (6) and the incompressibility condition that the
pressure term can be split into two: p =p, +p~, where

p, = —(V;VI/V )v;v~ as in free turbulence and p ~

=ag(V3/V') T so that

(lp i V3Vp
v = —ag v T =O(ag(v T))Pg Ii V2 P

is an eflective energy source for the components vp with

PA3. Based on these considerations we write an approxi-
mate equation valid in the central region of the cell:

of the temperature fluctuations is readily obtained:

s/8 —l/4N —~/8 (i 3)

From the definition of the efIective diA'usivity, we have

N= —( T) =x(I, )
t)8 L)8

L)Z L)Z

H
K(k;)

' (i4)

where k; = 1/L, H =const is the heat flux through the
cell, and x(k;) is the turbulent diffusivity defined by (12)
and (14). Now we introduce dimensionless variables, set-
ting 6 =L =v= re=a =1 so that g =Ra and H =N„
~here the dimensionless heat flux N„ is called the Nusselt
number. It follows from (12) and (14) that

N =N„5/3Ra (is)

The heat flux is estimated readily through the width of
the thermal boundary layer lq where the mean tempera-
ture 0 varies from zero to 0= 5, its value at the center of
the cell: H = xd/Iir =const. In the dimensionless units
this gives N„=lq '. In the simplest situation lq=ld,
which is the smallest scale of the temperature fluctuations
in turbulence, and using (13) the following relation is de-
rived:

Ng =Ra (i 6)

The root mean square temperature and velocity found
from the corresponding spectra (11) are

a ''9
~ =Rarms rms (i7)

Expressions (16) and (17) are valid only when L:x

&& ag(BThu)x. In the dimensionless variables N
=Ra ', ld =Ra ', t. =Ra ' and this inequality
reads Ra /' x / »1 which holds for x» ld. Thus, in the
range of scales ld & I & L the scaling relations (16),(17),
and the "nonclassical" exponents (11) are observed. It
follows from (8) that the scales I & ld correspond to the
temperature dissipation range where the amplitude of the
temperature fluctuations is negligibly small. However,
we will show below that this is the range where most of
the energy is transferred to and then dissipated into heat.
The rate of the energy production P, derived from the
equations of motion (6), is P =ag(v3T) = IV„Ra
= Ra ' . If we calculate the dissipation rate t. using
the spectrum (11) in the interval ld & I & L we find easily
that a=Ra ' ' and, thus, the energy balance evaluated
in this interval where relations (11), (13), (16), and (17)
hold is not satisfied since more energy is produced than
dissipated. In the temperature dissipation range where
I & ld we neglect the temperature fluctuations and find

from relation (1) or (10) that the energy balance is in

fact not violated since there exists another inertial range
of scales lg & I & ld, characterized by the Kolmogorov
spectrum: E(k) = e k with e =O(Ra ' ) which
is equal to the rate of the turbulence production. In this
case l~ = Ra ' . It is important to emphasize that the
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velocity fluctuations from this interval do not contribute
to the heat transfer process. In addition, this range is ex-
tremely narrow since ld/lx =O(Ra' ' ) and the experi-
mental observation of the Kolmogorov spectrum of the
velocity fluctuations might be very difficult. Thus, the
scaling relations (16) and (17) and the spectra predicted
in this work should always be observed in convection ex-
periments provided the estimate for the width of the
thermal boundary layer la=Id given by (15) is not
modified by some more complicated dynamical phenome-
na. For example, if /tt is found from the relation

agT„,its/tcv-1 then formulas (11) and (14) give

Nu Ra T ms Ra U s=Ra (18)

Since ld =Ra t the energy production and dissipation
rates scale as p = Ra t and e = Ra3sl3, respectively. In

this case, too, more energy is produced than dissipated in

the 1.4 range given by (11). Thus, a very narrow Kolmo-

gorov range, where the balance of the energy is dissipat-

ed, is to be expected in the interval lit &l &ld. There
e=P and ltr = Ra

The ratio ld/ltr =Ra', which makes the experimen-
tal identification of the Kolmogorov range equally dif-

ficult. Relations close to (18) have been observed in ex-
periments on high-Ra-number convection in large-
aspect-ratio (A &0.5) cells where the persistent large-
scale vortex ("wind" ) strongly influences stability and the
length scale of the thermal boundary layer [5-7). How-

ever, it has been noticed [8] that in small-aspect-ratio
cells this large-scale motion becomes unstable and one

can assume that when A (&1 the destabilizing influence of
the wind is negligibly small due to shear layer instability.
In this case crossover to the scaling behavior (16) and

(17) can be expected. Indeed, it has been reported by
Threlfall [9] that in a cell with A =0.14 the Nusselt num-

ber N„=Ra, which is extremely close to prediction
of this work (16) (,'9 =0.263). The experimental evi-

dence is not conclusive and much more extensive experi-
mental and numerical work is needed to verify all other
predictions derived in this paper to come to more definite
conclusions about realizability of relations (11), (16),
and (17) in real-life flows.

Another interesting outcome of this work is related to
the single-point probability distributions of temperature
fluctuations in thermal convection. It has been reported

[5,7] that the rise of the nonclassical exponents (18) is

accompanied by dramatic changes in the shape of proba-
bility distribution functions (PDFs) of temperature fluc-

tuations: In the regime in which scaling relations (18)
are observed the PDFs have exponential shapes. This be-
havior of the PDFs has been explained in terms of the

changes in the turbulence production mechanisms [10]:
The strong wind induces the instability of the boundary
layer leading to formation of very energetic plumes or
thermals emitted from the boundary layer with charac-
teristic velocity, close to the velocity of the wind. In the
absence of characteristic velocity, as in the low-Ra-
number convection, the PDFs must be close to Gaussian
[10]. If the theory developed here is applied to convec-
tion in small-aspect-ratio cells, then the predicted PDFs
of the single-point temperature fluctuations must be close
to the Gaussian since no characteristic velocity scale is
assumed in the derivation of (11), (16), and (17).

To conclude this paper I would like to mention that the
scaling exponents (16) and (17) derived in this work are
the direct consequence of the nonclassical spectra (11).
If the dynamics are dominated by the turbulence dissipa-
tion rate e then the "classical" —, relation is readily
recovered from the dynamical picture considered in this
work. Indeed, in this case e=agtc(k;)88/|)z=RaN„.
In the Kolmogorov turbulence the dissipation scale
ld = e 'l = (RaN„ ) 't . Assuming as before that
ld = ltt and taking into account that N„= ltt ', the "clas-
sical" expression N„= Ra' is readily obtained. Howev-

er, according to the above estimates the Kolmogorov
spectrum cannot be observed over the wide range of
scales in the high-Rayleigh-number convection and, thus,
the range of applicability of the 3 law is rather narrow.
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