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Transition from Chaotic to Nonchaotic Behavior in Randomly Driven Systems
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We discuss the explicit dependence of the final trajectory on initial conditions for randomly driven
nonlinear dynamical systems which are stopped and restarted with random velocities at regular intervals
(a Brownian-type motion). We find a transition from chaotic behavior for long intervals between stops
to nonchaotic behavior for short intervals between stops. For short intervals, the Lyapunov exponent is
related to the thermal average square force due to the potential. The consequences for "hybrid
molecular-dynamics Monte Carlo" sampling methods are discussed.

PACS numbers: 05.45.+b, 05.40.+j

In the study of nonlinear dynamical problems, it is a
familiar fact that the trajectory of a particle may show
extreme sensitivity to initial conditions, i.e., the system
exhibits chaotic behavior [1]. The deterministic evolution
of such a system appears to display a random character,
and modifying its dynamics by adding truly random
forces might be expected to make its behavior "more ran-
dom. " We recently discovered a counterintuitive con-
tradiction of this notion: When an ensemble of particles
with diferent initial conditions are driven by an identical
sequence of random forces designed to simulate Brownian
motion, their trajectories may become identical at long
times. (Here, and in the rest of this paper, when we say
that trajectories become identical, we mean that the aver-

age distance between them converges exponentially to
zero. ) It is well known that no matter what the initial po-
sition of a particle undergoing Brownian motion in a fixed
external potential V(x), the statistical distribution of its
positions at long times is simply given by the Boltzmann
distribution [2], proportional to exp[ —V(x)/ktsT] for the
appropriate temperature T. Our result entails a much
stronger statement than the observation that the statisti-
cal distributions of Brownian trajectories become in-

dependent of initial positions; the ensemble of trajectories
becomes point by point identical in time, following a sin-
gle final trajectory, which is, however, highly erratic and
random.

We consider a particle of mass m which moves accord-
ing to Newton s equations (without friction) in a poten-
tial V(x), except that at regular time intervals r it is

stopped and the components of its velocity are reset to
random values chosen from a Gaussian distribution of
variance ktsT/m (i.e., the velocity is reset at regular inter-
vals from a Maxwell distribution for temperature T).
This motion is in many respects similar to Brownian
motion of the particle at a temperature T. It can be
shown that the distribution of positions of the particle for
long times is just the Boltzmann distribution, independent
of the value of r chosen [3]. Indeed, this approach is fre-
quently used in Monte Carlo simulations [3,4] to sample

points from a probability distribution P(x) by choosing
the classical potential V(x) = —kttTln[P(x)]. (In the
numerical simulations presented here we will set ktsT and
rn equal to unity [5].)

In typical Monte Carlo applications, x represents a
vector with many components, corresponding to motion of
a particle in a high-dimensional space. While the
phenomenon we describe was discovered in such a situa-
tion, the dimension of the space in which the particle
moves does not appear to be crucial. For ease of visuali-

zation, we will present in detail here the behavior of a
two-dimensional system chosen to be a "bad case" in a
sense discussed below. This system has the quartic-plus-
sinusoidal potential

V(x,y) =si n(2 trx) /2z x+sin(2') /2x y+r /16tr,

shown in Fig. 1. Shown in Fig. 2 is the mean-square dis-
tance (ri2) between pairs of identically driven particles in

this potential, first for 150 steps with a time between
stops of r =2.5, and then for 150 steps with r =1.0. (By

FIG. 1. The potential V(x,y) =sin(2nx)/2nx+sin(2ny)/
2ny+r /16'.
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FIG. 2. The mean-square distance (r)21 between pairs of
identically driven particles vs number of steps, for the potential
in Fig. 1. The particle coordinates were initially independently
distributed from the Boltzmann distribution. The time r be-
tween stops was 2.5 for the first 150 steps and was 1.0 for the
second 150 steps. 100 independent simulations were averaged
for the curve shown.

"identically driven, "
we mean that both particles of each

pair were given an identical, randomly chosen velocity [6]
at the start of each step of length r).

The behavior of the particles shown in steps 150-300
of Fig. 2 is an illustration of a phenomenon which may be
loosely stated as follows: If the time interval r between
steps is lower than a threshold value r„ the ftnal trajec
tory of the particle is entirely independent of the initial
conditions to any required level of accuracy (For th. e
motion shown in Fig. 2, the threshold r, is between 1 and
2.5.) When r & r„ if two particles are started at entirely
diAerent positions but are "driven" by the same particu-
lar choice of velocities, they will (with probability 1) end

up traveling along exactly the same trajectory at the
same time. The final trajectory depends only on the
choice of velocities, not on the initial position of the parti-
cle. We have observed this behavior in simulations of a
variety of bounded systems (i.e. , systems where the
Boltzmann distribution eA'ectively confines the particles
to a finite region), with as many as 3000 coordinates, as
often arise in Monte Carlo applications. We have not yet
been able to find a bounded system for which the rule is
violated [7]. We will prove the result for bounded one-
dimensional systems, by showing that the appropriately
defined Lyapunov exponent for the random motion is neg-
ative when v is su%ciently short and is simply related to
the thermal average of the square of the acceleration due
to V.

Thus, although the trajectory of the particles is highly
erratic, the system is not chaotic when z. & I.„because
the final path (though random) is independent of the ini-
tial conditions. The threshold value ~, and the rate of
convergence of the trajectories for any given value of ~

depend on the potential energy function V(x) as well as
on the variance k T/tiomf the velocity components. If the
time interval r is greater than r„ the motion of initially
uncorrelated particles subjected to an identical choice of

x'(r ) —x(r) r' x' —x= 1+
-~ o -'co X0 YQ

~2 $2V

2m

driving velocities is correlated at large times (as in the
first 150 steps of Fig. 2) but never becomes identical.
Indeed, particles that started out very close together will

not exhibit any greater correlation in their motion at
large times than particles that started far apart. In this
regime, the system is chaotic in the usual sense of ex-
treme sensitivity to initial conditions.

Among unbounded systems, an obvious counterexam-
ple to the result is for a potential V(x) which is constant
everywhere. In a periodic potential, the statement can
only be true modulo a period of the potential. For exarn-

ple, in simulations of the two-dimensional periodic system
with

V(x,y) = [cos(2trx)+cos(2try)+cos [2tr(x —y)lj/2tr,

we observe that particles started at random positions but
driven by the same set of velocities end up following ex-
actly identical motion except for a constant shift of a ran-
dom number of complete periods of the potential in the x
and y directions. In general, we suspect that the original
statement will only be true for systems where the particle
is confined to a finite region, either by the potential or by
the geometry of the problem (e.g. , by folding a periodic
potential onto a torus).

For bounded linear systems, where V(x) has a qua-
dratic form, the final motion is independent of the initial
motion for all values of r; i.e., the value of z, is infinite.
The action of regularly stopping and restarting the parti-
cle can be thought of as an infinite damping force "turned
on" for an infinitesimal time at intervals i apart, followed

by a driving force with the appropriate impulse also ap-
plied at intervals of T. Because harmonic oscillators obey
linear superposition, we see that after the damping term
causes the initial conditions to decay, the final motion de-
pends only on the velocities chosen to drive the particle.
The damping analogy can be used for nonlinear systems
also, but linear superposition is not obeyed, and the
eA'ects of initial conditions need not vanish at large times.

We now show analytically that for any one-dimensional
potential V which confines particles to a finite region, and
for short enough intervals T: between stops, the average
rate of contraction y of the distance between two parti-
cles initially close together (i.e. , the negative of the
Lyapunov exponent) is given by y=yn+O(r ), ~here

yn
= r((8 V/r)x) 2)/2mktt T . (1)

The angle brackets denote the thermal average (with
respect to the Boltzmann distribution). To prove this,
consider two particles initially at points xo and x{) close
together. Let the two particles be started with equal ve-
locity x. For short times, the positions of the particles are
given by x(t) =xo+xt+xt /2+ . . and x'(t) =xo+xt
+x't /2+ . The contraction of the distance between
the particles at the end of one interval r is then given by
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since mx = —t)V/t)x. If the curvature of the potential
r) V/r)x is greater than zero, the particles move closer
together, and if it is less than zero, they move farther
apart during the motion. So in general the particles do
not always move closer together in each individual step.
However, the probability that a particle is at a position x
during its motion is proportional to exp[ —V(x)/kqT].
Thus, the average contraction of the distance between
identically driven particles in one step of length z is given

by
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where Z is the normalization factor for the Boltzmann
distribution. The average rate of contraction over many
such steps is then

"t)V
yo= „2exp[ —V(x)/k8T]dx.2Zm"

Integration by parts (with the assumption that boundary
terms vanish) gives the result yo=z((av/ax)')/2mknT
It is clear how this result breaks down for larger values of
z; the proof relies on the expansion of the trajectories to
second order in z, which is not valid for large values of z.

Intuitively, we may consider that the harmonic-os-
cillator argument above applies when the particle makes
a sufficient number of stops within a region of positive
curvature. Since positive curvature occurs near minima,
and negative curvature near maxima of the potential, the
Boltzmann weight favors the former regions. The poten-
tial in Fig. 1 was chosen to have a number of accessible
regions of negative curvature so that it would clearly il-

lustrate this point.
Although the proof in one dimension does not extend in

an obvious way to higher-dimensional systems [8], the
numerical evidence suggests that the qualitative nature of
the result is true for bounded systems of arbitrary dimen-
sion. In fact, for most of the potentials we have investi-

gated, the generalization of Eq. (1) to higher dimensions
gives a reasonable estimate (within an order of magni-
tude) of the average rate of contraction of the distance
between pairs of identically driven points in the limit of
small z, as shown in Fig. 3 [9]. Note that Fig. 3 shows
the asymptotic contraction rate y. For i & ~„—y is the
Lyapunov exponent, but for z ) z, it is identically zero
(because the particles are confined to a finite region) and
is diA'erent from the Lyapunov exponent, which is posi-
tive. It is intriguing to find that the value of r, is similar
for both systems shown in Fig. 3. However, we do not
clearly understand at this stage the factors which deter-
mine r, . Moreover, although yo gives the average rate of
convergence of two close trajectories, fluctuations in the
rate are an important aspect of the behavior of the sys-
tem, especially near threshold r, .

Apart from its intrinsic interest, this result has some
important consequences for Monte Carlo applications us-

FIG. 3. Asymptotic average contraction rate y, scaled by yo

from Eq. (l), vs z for (a) the potential shown in Fig. 1 and (b)
the one-dimensional Duffing potential, V(x) =x"—x ~.

ing the sampling idea described above. In many such ap-
plications, one must be concerned that measurements of a
quantity at nearby times in the simulation will be strong-
ly correlated with one another, substantially reducing the
rate at which "effectively independent" samples are gen-
erated [4]. The phenomenon of critical slowing down is

associated with such correlations becoming very long
ranged. However, the autocorrelation time (the time re-
quired to generate "effectively" uncorrelated samples
[10] from the Boltzmann distribution) depends on the
quantity being measured. For example, near a phase
transition, measurements of the order parameter relevant
to the transition tend to have very long autocorrelation
times, whereas the measurements of other quantities may
be relatively well behaved [10]. It is clear that the
present result (when applicable) ensures that the time re-
quired for trajectories to become identical is an absolute
upper bound on the autocorrelation time for measure-
ments of al/ quantities. Thus, it may be used to test for
critical slowing down, even when the nature of the transi-
tion and the associated order parameter are unknown.
However, we emphasize that this result provides no solu-
tion to such critical slowing down.

We have empirically observed the independence of ini-
tial conditions to occur in other, less natural, forms of
driven motion for which the particles do not have a
Boltzmann distribution. For example, independence of
initial conditions also occurs for short time steps if some
of the coordinates x; (instead of the corresponding com-
ponents x; of the velocity) are reset at random from a
Gaussian distribution at the end of each step. This seems
to suggest that something other than the Boltzmann dis-
tribution explicitly used in the derivation of Eq. (1) may
be at the heart of the behavior.

It is possible to modify the stop-start motion in other
ways and still observe the independence of the final tra-
jectory on initial conditions. For a fixed value of i one
may mix in some of the "old" velocity v, ~d with the ran-
dom velocity v„„ to get a new starting velocity, v„,„
=avog+Pv„„, where a +P =1. As a increases from 0
to 1, the motion changes gradually from the stop-start
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kind already discussed to an uninterrupted conservative
motion. A threshold value of a =a, separates nonchaotic
behavior of the motion (for a & a, ) from chaotic behavior
(for a) a, ). The value of a, depends on r Simulations
of motion in the periodic potential given above under

Gaussian random driving forces applied at regular inter-
vals with the addition of a constant damping proportional
to velocity (but without stopping the particle at regular
intervals) reveal a similar transition from nonchaotic be-

havior for large damping to chaotic behavior for small

damping.
Finally, we note that the nature of this result (i.e. , the

exponential convergence of trajectories, with a well-

defined Lyapunov exponent) ensures that it is insensitive

to round-oA and truncation errors in the numerical simu-

lations. Of course, at what point the machine representa-
tions of two trajectories become truly identical depends
on the machine precision.
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