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Heavy Atoms in the Strong Magnetic Field of a Neutron Star
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The ground-state energy of an atom of nuclear charge Ze and in a magnetic field B is evaluated exact-
ly in the asymptotic regime Z ~. We show rigorously that there are five regions as Z
B«Z"', B=Z"', Z"'«B«Z', B=Z', B»Z'. Different regions have different physics and
different asymptotic theories. Regions 1,2,3,5 are described exactly by a simple density-functional
theory, but only in regions 1,2,3 is it of the semiclassical Thomas-Fermi form. Region 4 cannot be de-
scribed exactly by any simple density-functional theory; surprisingly, it can be described by a simple
density matrix functional theory.

PACS numbers: 31.15.+q, 03.65.—w, 31.20.—d, 97.60.Jd

This Letter is concerned with the effect on large atoms
of ultrastrong magnetic fields B, which are constant in

space and time. The prototypical applications of our re-

sults are to atoms on the surface of neutron stars, some of
which are believed to have surface fields of 10' -10' G.
The atoms on the surface are mostly iron for which

Z =26, which is a large number because ordinary
Thomas-Fermi (TF) theory is reasonably accurate for
this Z when B=0.

In natural units in which I1 =c=m, =e =1, the unit of
magnetic field is m, e ch =2.4&10 G. For this field

the magnetic length, dch/eB, equals the Bohr radius h, /

m, e . Thus, 10' is certainly a large field.
The Hamiltonian for an atom with nuclear charge Ze

and N electrons (charge —e) will be taken to be
N

H = g 2 [p;+A(r;)) + —,
' B a; —Zr; '+ g ~r;

—rj ~

i l i(j
(1)

where tr denotes the Pauli matrices and A(r) = —,
' Bx r is

the vector potential. The quantum ground-state energy
of H is denoted by E~(N, Z, B) We are als.o interested
in the ground-state density

p (r) =g „~y(r, r2, . . . , rtv.,cr), . . . , otv)~'
CJ

xdr2 drN,
where y is a ground-state wave function and where we

suppress explicit dependence on N, Z, B.
Given the above facts about Z and 8 it is sensible to

develop an asymptotic theory for E~(N, Z, B) as Z and 8
tend to infinity and with the ratio N/Z held fixed. For
the case 8=0 this asymptotic theory is known. It is TF
theory which was proved [I] to be exact in 1973.

The B&0 case has been investigated since the early
1970s by several authors [2-10j who studied different pa-
rameter regimes and developed various approximation
schemes such as TF and Hartree-Fock theories. To the
best of our knowledge, however, a precise statement
about asymptotics was never actually made, much less
proved, except for the case treated in [11). Additionally,
it is difficult to find a precise statement in the literature

about the qualitatively different regimes of 8 vs Z. Our
contribution below consists primarily in bringing pre-
cision, rigor, and definiteness to this question.

It turns out that there are exactly five regimes to be
considered, which differ from each other both in math-
ematical treatment and in physical content.

Before giving our results in detail we begin with an

overview and some general remarks. The five regions are
described as follows: (1) 8«Z I; (2) 8=Z I; (3)
Z I~&&8&&Z; (4) 8 =Z; (5) 8))Z . The symbol &&

in region 1 means that 8/Z I 0 as Z ~, and simi-

larly for regions 3 and 5. The symbol = in region (2)
means that 8/Z I is held fixed as Z ~. In the follow-

ing an assertion about the atom is always to be under-
stood as "to leading order as Z vv. " Details of our
work on regions 1,2,3 and on 4,5 will be given in two

separate publications.
In all five regions the limit Z ~ causes correlation

effects to vanish rigorously to leading order. Hence, in

each region a kind of mean field theory is rigorously exact
to leading order, but the nature of this theory depends on

the region. Regions 1, 2, and 3 are characterized by a
semiclassical theory, i.e., a modified TF theory. The den-

sity here is spherical. Regions 3, 4, and 5 are character-
ized by all the electrons being in the lowest Landau
band —a fact that is not true for regions 1 and 2. In par-
ticular, this means that all the spins are polarized toward
the field B. It is in region 4 that the atom becomes non-

spherical and in region 5 it has degenerated to a "nee-
dle. " The ratio 8/Z is like an effective Planck's con-
stant and therefore region 5 corresponds to the opposite
of a semiclassical limit (someone called it a "post-
modern" limit).

Relativistic effects are neglected here and it is believed
[51 that they do not play an important role at least until

8=a =(137) = (26), which is the value of 8 for
which m, c =h x(cyclotron frequency). It can be ar-
gued, however, that relativistic eAects are not crucial
even for very much larger values of 8 because the in-

teresting electronic motion is in the direction parallel to
the field; the energy of this motion depends on 8 only in
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A(p) under these conditions if and only if N ~ Z. When
N & Z the TF energy is equal to the energy at N=Z.
The minimizing p is unique and satisfies the TF equation
r'(p(r)) =Zr ' —fp(r')~r —r'~ 'd r' —p, whenever

the right-hand side is positive and p(r) =0 otherwise.

Here, —
p (0 is a chemical potential (that vanishes

when N =Z). Since p(r) is unique it is necessarily spher-

ically symmetric, i.e., p depends only on r.
In each of the first three regions there is a TF theory

that is asymptotically exact. The diff'erences among the
three theories lie in the function r.

Region 1, 8&&Z .—The function r is the same as in

standard TF theory, i.e., rti(p) —= io (3tr ) t
p

t . Thus, to

leading order, the value of B plays no role. More precise-

ly, if Eo "(N, Z) denotes the usual TF energy, and 8/
Z t 0 with N/Z fixed as Z ~, then E~(N, Z, B)/
Eo (N, Z) 1. There is only one nontrivial parameter,
X=N/Z, in the theory because of the scaling

Eo "(N, Z) =Z Eti" (X, 1). For a fixed value of X the

TF density has the form Z po "(Z' r). The quantum

density p~ converges [in the sense of weak L~~(R )] to
this TF density after appropriate scaling, i.e. , Z
x p~(Z ' 'r) pii "(r). The atomic radius thus behaves

as Z
Region 2, 8/Z t =const —This. is the case treated in

[11] (see also [16] and [17]). The function r now de-

pends on 8 in a complicated way; we denote it by r z. It
is the Legendre transform of the pressure of a free elec-
tron gas in the magnetic field 8 as a function of its chem-

ical potential v (not to be confused with the chemical
potential —

p of the TF atom), i.e. , r 8(p) =sup, , [pv
—Ptt(v)] with

Ptt(v) =2'"(3tr') '8 v'"+2 g (v —Bv)'"
v~]

The terms in the sum correspond to diAerent Landau
bands and the sum extends only over bands v for which

v —Bv~ 0. Note that ztt(p) = —,', (3tr ) t
p

t for large

p and rit(p) = 3 tr p /8 for small p.
In this region there is a second nontrivial parameter

P =8/Z t . The scaling of the energy is E "(N,Z,
8) =Z t E "(1,1,P). The density is a function Z

xpti
"(Z' r) depending on the parameter dg as well as on

When P 0 the energy and density agree with the en-

ergy and density in region 1.
As before, we have that if P and k are fixed as Z

the quantum energy is given to leading order by the TF
energy (which now is 8 dependent). Likewise, for the
density we have as before Z p&(Z ' r) pP(r).
Since pti

"(r) is spherical we reach the remarkable con-
clusion also applicable to the next region that although B
affects the energy and density it does not spoil the spher
I Cl tg'.

In this region as well as in the next we find that unlike

the ordinary TF theory of region 1 the TF density always
has a finite radius. In ordinary TF theory the density will

have a finite radius if %(Z but not if N=Z. This

+ 2 J „p(r)p(r')~r —r'~ 'd rd r', (3)
in which r is some positive convex function that satisfies
r(0) =r'(0) =0. It is assumed that for some e) 0, r(p)
is greater than p3t2+' for large p [to ensure that C(p) is
bounded below] and smaller than p t +' for small p (to
ensure that as many as Z electrons can be bound).

The function r (p) is supposed to be the kinetic energy
density of an appropriate but ideal Fermi gas. The TF
energy E " for a particle number N is defined to be the
infimum of A(p) under the condition that fp(r)d r =N
It is a basic theorem [15] that there is a p that minimizes

the combination )n(8/Z ) for large 8 T.he perpendicu-
lar motion is frozen into the lowest Landau level (which
is largely insensitive to relativistic corrections anyway).

A noteworthy feature of our analysis —from the point
of view of density-functional theory —is the introduction
of a density matrix functional .Regions 1, 2, 3, and 5

can be exactly described in the limit Z ~ by a func-
tional of the density p(x). (This functional involves Vp

in region 5, but it is nevertheless a density-functional
theory. ) Region 4 is special. Although a B-dependent
density functional exists theoretically (by the Hohen-
berg-Kohn-Sham theorem), it does not exist in the realm

of anything we, at least, can compute. However, we can

display a simple functional of a one-body density matrix,

y, that is exact as Z ~. This matrix y is not the full

one-body density matrix I ' (which would be unmanage-

able, since N ~). Rather, it equals the diagonal part
of I

' with respect to the variables perpendicular to 8;
i.e. , if r= (x,y, z) and x j—:(x,y), then

y, , (z,z') —= I "'(xi,z;x,z') . (2)

The reason this y is manageable is that it has a finite
rank (independent of N as N ~) for each value of the
parameter x & (provided 8/Z is bounded away from
zero as Z ~). To our knowledge an exact density ma-
trix functional of this kind is novel.

Finally, we should also remark about ionizability and
atom-atom binding. In the semiclassical regions 1, 2, and

3 atoms neither bind together nor support negative ion-

ization to leading order. This is the same as in ordinary
TF theory. In regions 4 and 5 both atom-atom binding

and ionization become possible to leading order This.
means that binding energies of excess electrons to atoms
and of atoms to atoms is of the order of the total atomic
energy itself. The structure of matter therefore will be
vastly diff'erent from what we normally see [12-14].

We now present a more detailed description of the five

regions. We emphasize that all these results are rigorous;
the proofs will be presented elsewhere. Our results ex-

tend also to the case of molecules.
First let us recall the definition of a Thomas-Fermi

type theory [15]. It begins with a functional 6(p) of a
one-particle density p(r) given by

6(p) =„r(p(r))d r —ZJ' r 'p(r)d r
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difference follows from the fact that rtt behaves as p for
small p rather than as p ~ .

Region 3, Z ((B&&Z .—This region corresponds to
the p ~ limit of region 2. This means that a TF
theory with r(p) taken to be r (p)= 3 tr p /8 (which
is the asymptotic form of rtt for large 8) is exact to lead-
ing order. In this region there is only one nontrivial pa-
rameter, A, , because the dependence of the energy E "
and the density p

" on B can be scaled away. In fact,
E (N, Z, B) =Z t

P
t E "(A,, I, 1 ). The minimizing

density can be written, for fixed A, , as Z p t

&&p "(p t Z't r). In the limit Z ~, p ~, but BZ
0, the quantum energy and density are given to lead-

ing order by the energy and density in this TF model.
More precisely, in this limit E~(N, Z, B)/E "(N,Z, B)

I, and Z P ~(P Z ' ) "( ). Th
effect of the 8 field is thus to decrease the energy and de-
crease the radius, which now behaves like Z '

P t . If
this radius is written as (8/Z ) t Z ' and if we recall
that the Bohr radius is Z 'iii jm, e, we see that the TF
theory can only be appropriate for 6 (8/Z ) 't ((1.
Stated differently, (8/Z ) 't h plays the role of an
effecti ve Planck's constant

Region 4, 8/Z =const A.—s stated before, it is a
theorem that if 8/Z t goes to infinity then we can as-
sume that all the electrons are in the lowest Landau
band. Assuming that exchange and correlation energies
can be neglected as before (which, like all our other as-
sertions, can be proved) the energy as a function of the
unknown density matrix y defined in (2) can be written
as

@DM(y)
4

2

2 y„,(z, z') d r — Zr 'p(r)d r+ —,
' p(r)p(r')~r —r'~ 'd rd r',

z . z-z'

where p(x, y, z) = y„,(z,z) is the one-particle density
(DM stands for density matrix).

It is not too difficult to prove that the condition that all
the electrons are in the lowest Landau band, together
with the Pauli principle, has the consequence that the
density matrix y satisfies

0~ y„(z,z') ~ 8(z —z'), (5)

as an operator, i.e.,

y, ,(z,z')f(z)f(z')*dz dz' ~ „(f(z) ('dz .

The new minimization problem that replaces the TF
problem is to minimize A' subject to (5) and to the
condition fp(r)d r=N. Our main theorem is that a
unique energy-minimizing y exists for this problem and
that its energy E (N, Z, B) is asymptotically exact in

the sense that E&(N, Z, B)/E (N, Z, B) 1 as Z
provided 8/Z+~ ~. Note that this statement includes
regions 3, 4, and 5 under one umbrella, but regions 3 and
5 can be described more simply by their own density-
functional theories.

In this region there are again two nontrivial parame-
ters, namely, k=N/Z and rt= 8/Z . The energy s—cales
like E™(N,Z, B)=Z3E (X, l, rt) and the energy-
minimizing y is of the form Z yz„,(Zz, Zz'), where y
depends on the parameters A, and g. Thus the density
scales like Z p (Zr). Our theorem includes the asser-
tion that the true quantum density converges to this den-
sity, i.e., Z p~(Z 'r) p (r) in the same sense as
before.

The density matrix y can of course be written in the
form +1ijgt (z)pt (z') *. The non-negative numbers
and the orthonormal functions p~ depend on x~ and
Aj ~ 8/2tr. In fact, one of our theorems is that for each
x& only finitely many X's are nonzero and these have the
value 8/2tr The corresponding &J(z)'s. satisfy the one
dimensional Schrodinger equation, parametrized by x&,

2

, y,
—W„,(z)p, =p, (x j.)PJ (6)

z'
where W„(z) =Zr ' —fp(r') ~r

—r'~ ' d r' is the
Coulomb potential along the fiber x& =const. Although
the directions parallel and perpendicular to the field B
both scale as Z ', the atom is definitely no longer spheri-
cal. It has the shape of a cylinder with a finite radius
smaller than (2N/8)'t . This last conclusion follows
from a theorem which states that the lowest eigenvalue

p~(x~) is a monotone increasing function of ~x&~.
The one-dimensional problem specified by (6) is amen-

able to computer calculations and the only difficulty con-
cerns the fact that the one-dimensional potential on each
fiber is determined by the global density p. We em-

phasize once again that this is quite different from the
Hartree-Fock theory because the number of eigenvalues
and eigenfunctions needed on each fiber is independent of
N and depends only on the parameter 8/Z . As 8/Z
tends to zero this number tends to infinity and eventually
we obtain the semiclassical limiting theory of region 3.

On the other hand, if 8/Z is sufficiently large but
finite, only one eigenvalue has to be considered along
each fiber. In this case the density matrix and the density
contain the same information since y„,(z,z') =fp(x&,
z)]'t [p(x&,z')1't . Then the energy functional depends
only on the density and we are led to the analysis of the
last region.

Region 5, B&)Z .—If we substitute the above expres-
sion for y into the energy functional (4), we obtain anoth-
er functional of the density p. Note that it resembles TF
theory except that the kinetic energy term fr (p) is re-
placed by a Hartree-like term f(8Jp/Bz) d3r involving
the density gradient along the field. This term is not by
itself strong enough to guarantee a bounded energy, but
when it is supplemented by the subsidiary condition (5),
which now reads jpdz ~ 8/2tr for all x~, it does prevent
collapse.
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The lowest eigenvalue of the one-dimensional Schro-
dinger operator (6) will behave like p t (x ~ ) ——Z
x [In(Zlx~l)] for the small values of lxs l

relevant
when 8»Z (while the second eigenvalue is larger than
—

—,
' Z ). Since the perpendicular radius of the atom is

of order (2Z/8) 't, we see that the asymptotic form of
the energy is Z [In(rt)] E" (N/Z) for large values of
the parameter rt =8/Z . Our aim is to find the function
E" of the only nontrivial parameter X=N/Z (HS here
stands for hyperstrong). The length of the atom deter-
mined by the one-dimensional uncertainty principle is of
the order of Z '[In(rt)] '. Thus the length is longer by
a factor (g)'t [In(rt)] ' than the width of the atom. For
8» Z the atom has degenerated into a "needle. "

From the scaling of the energy it is clear that only elec-
trons at a distance D—=Z '[[n(tl)] or less from the
nucleus contribute to the attractive potential energy to
leading order. It also means that the Coulomb repulsion
contributes to leading order only when electrons are
closer than D from each other. Note that this eA'ective

range D of the Coulomb potential is shorter by a factor
[[n(tl)] ' than the length of the atom. Thus, we are led
to the conclusion that in region 5, where g

-- ~, the atom
not only degenerates into an "infinitely thin needle" but
the Coulomb potential can be replaced by a delta func'
tion. Consequently, the function F. " appearing in the
asymptotics of the energy can be computed from the fol-
lowing functional of a one-dimensional density p(=):

8" (p) = (t)p' '/t) )'d —p(0)+-,' „p( )-"d . (7)

The energy E" (A, ) is the minimum of t'" over all den-
sities p with fp(z)dz =X. Apart from some scaling p is
the cross-sectional integral of p(r).

It is remarkable that the functional (7) can be mini-
mized in closed form. The Euler-Lagrange equation is,
with y=p'

—ttt" (z) —6(z) ttr(0) + ttr'(z) =p tlt(z) .

A minimizer exists if and only if X ~ 2. The explicit solu-
tion is

J2(2 —X)

ttr(z) = 4sinh[-, ' (2 —k) lzl+c]

.~2(2+lzl) ' «r&=2,
with tanhc =(2 —

A. )/2. For A. ~ 2 the energy is

E" (X) =@" (y') = ——'X+ —'X' ——'X-' (8)
Finally, we note the strange fact about ionizability that

we alluded to at the beginning. The maximum number of
electrons is Ã=2Z, not Z as we are used to. Not only
can we bind that many electrons but the binding energy
of the last Z electrons is of the same order of magnitude
as the first Z electrons. This is consistent with the fact,
which we can also prove, that atom-atom binding ener-
gies in this region are of the same order as the internal

energy. In fact, we can compute the exact asymptotics of
the binding energy of a K atomic molecule since to lead-

ing order in the energy we can neglect the nuclear repul-
sion as long as the nuclear distance is bigger than D.
Thus to leading order the energy of a K atomic molecule
is the same as the energy of an atom where all K nuclei
are on top of each other. Thus the asymptotics (as
Z ~ and t) — ~) of the binding energy of, say, a neu-

tral diatomic molecule with two identical nuclei of charge
Z is [using the explicit form (8) of E" ] given by

[(2Z) —2Z ][In(tl)] lE" (1)l = —,
' Z [ln(g)]

The eff'ect is dramatic. The binding energy is greater
than the energy of the two individual atoms.
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