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It is shown that self-similar behavior in multiplicity fluctuations exists in the Ginzburg-Landau

description of second-order phase transitions.

Furthermore, there exists a numerical exponent that

characterizes the intermittency properties in the hadronic phase and is independent of the specific values
of the coefficients in the Ginzburg-Landau potential. Current data on intermittency are only 2o away

from the critical exponent.

PACS numbers: 25.75.+r, 05.70.Fh, 24.60.Lz, 24.85.+p

In a high-energy nuclear collision, which is the only
feasible way in the laboratory to possibly create a
thermalized quark phase, the remnants of the phase tran-
sition to hadrons would be copious and readily measur-
able. The usual connection between correlation functions
and the Ginzburg-Landau description of phase transitions
in conventional statistical physics [1] has been applied to
the study of multiparticle final state a long time ago [2],
and were revived more recently in consonance with the
development of interest in multiparticle production [3-5].
The introduction of intermittency to particle physics [6]
has at the same time stimulated considerable activities in
the study of self-similarity behavior of multiplicity fluc-
tuations in varying sizes of resolution cells [7,8]. In relat-
ing intermittency to the quark-hadron phase transition
there is so far only a speculation on the behavior of the
intermittency index [9], based partly on the results of
studies of the Ising model [10,11]. In this paper we in-
tegrate the various concepts mentioned above and deter-
mine the properties of intermittency in the Ginzburg-
Landau (GL) theory. What emerges is a critical ex-
ponent that is independent of the precise values of the
coefficients in the GL potential, so long as they allow the
hadronic phase to develop.

To simplify our problem let us focus our attention on
one small cell in phase space of size &, ignoring all other
parts of the phase space. We shall take the variables to
be the rapidity y and transverse momentum p7, and
denote them collectively by z; thus § represents 8y dpr.
Let the number of particles observed in & in an event be
n, and let the multiplicity distribution in n after many
events be P,(8). The scaled factorial moments [6] are
defined by

(n(n—1)--- (n—q+1))
(n)9

where (- --) denotes (vertical) averaging with weight
P,(8). Intermittency refers to the power-law behavior

Fa(8) s ™% ()

F(8)= , )

over a range of small §. There exists abundant evidence
for such behavior in e e ~, up, pp, pA, and AA collisions
[12].

If there is no dynamical contribution to the multiplicity
fluctuation, such as due to a phase transition or any other
production mechanism, P, should be just the Poisson dis-
tribution, P2, reflecting statistical fluctuation only. In
that case F; would have no dependence on (n), and there-
fore on 8. Thus our interest is in the deviation of P, from
P?. 1t suggests the use of the coherent-state representa-
tion, since the multiplicity distribution of a pure coherent
state |¢) is Poissonian, i.e., |[{n|¢}|>=P2, with

<n>=(¢|£)6dzaT(z)a(z)|¢)=f06dz|¢(z)|2, G)

where the property a(z)|¢) =¢(z)|¢) has been used. It is
the fluctuation from such a pure state that characterizes
our problem. The use of coherent states in the study of
multiparticle production has been considered before
[13-15]. We find it ideally suited for the formulation of
our problem in intermittency.

In general the system need not be in a pure state |¢).
Let Flg] be the free-energy functional of ¢ that pre-
scribes the probability that the system is in the state |¢).
Then we have

P,,=Z"f$¢P,?e_”"] (4)

and

z=[Doe 1. )

Using (3) in P=(n!) ~"(n)"e =", which is then substi-
tuted into (4), we can apply the resultant P, to the calcu-
lation of the fractorial moments

oo

fqiﬂgq(rl—"iﬁi)" =Z —If‘@“) [fd2|¢(2)|2] qe —Flol
(6)

It then follows from (1) that

Fo=fIf1. @)
We now let Flg] take the Ginzburg-Landau form [16]

Flol = [ dzlalo ()2 +bl9(2) | *+clog/oz121,  (8)

where a, b, and ¢ are constants that characterize the sys-
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tem, commonly regarded to depend on temperature 7 in
specific ways. The range of integration can be over any
volume in the phase space of interest, just as it is for the
integration over z in (6). If it is restricted to the y axis
over an interval Y as is usually done, then one obtains, for
b =0, the correlation length £=+c/[a[ [2-5]. Our in-
terest here, however, is to consider only a small cell of
size &, within which we claim no power for further resolu-
tion. That is, within § we cannot subdivide the cell and
examine the variation of ¢(z) within 6. The consequence
is that Fl¢] becomes

Flpl =5(alg|*+b]ol*) )
for vertical analysis at small §. The c|9¢/9z|? term is
relevant to the horizontal analysis over the entire phase
space, which is currently under investigation.

As is well known, the transition point is at a =0; b is
always positive for a stable system. For a > 0, the poten-
tial minimum is at |¢|?>=0, corresponding to the quark
phase without condensate. For a <0, the minimum is at
|62 =|¢0|>= —a/2b, corresponding to the hadron phase
with condensate. If there were no fluctuation in ¢ from
that value, then we would have from either (3) or (6)
with g =1 the average hadron density

(n)/6=|gol?>=—a/2b. 10)

Thus —a/2b has immediate physical interpretation for
a <0. Of course, more interesting physics follows from
the fluctuations allowed by (9). Nothing about Flg¢l, for
a >0, can be identified with measurable quantities in
terms of hadrons. In the following we shall do computa-
tions only for a <O0.

Putting (9) in (6) and requiring ¢ to be constant inside
8, but allowing it to vary over the whole complex plane,
we have

fo=2z "V50x [ "d|o|?|g] e oI =lallel) ()
0
This can be integrated exactly so that from (7) we get
Fy=q!D_,—(s)D ()DL (5) , (12)

where s=—|a|/8/2b, and D _,(s) is the parabolic
cylinder function. We shall use the variable

x=s’=(a?/2b)6 (13)

and examine the x dependence of F,(x).

Our first remark is that for the scaled moments F; the
dependences on &, a, and b do not occur separately but
only through the one variable x. That implies a connec-
tion in the & dependences for various cases involving
different values of a and b; we shall return to this point
below. If & were allowed to be large, then the exponential
in (11) would be sharply peaked at |¢o|? and we would
have the trivial Poissonian result without the dynamical
effect due to the c|8¢/8z|2 term. If, on the other hand,
we let & become infinitesimal, then the fluctuation in ¢
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can be so large that there would be no sensitivity to the
value of @ in (11). Thus because of (13) we expect F, to
become independent of x in that limit, which means no
intermittency, i.e., ¢, =0. Evidently, the interesting re-
gion that can possibly reveal some nontrivial § depen-
dence in Fj is for some intermediate values of x.

In Fig. 1 we show InF,; vs —Inx for various values of g.
Evidently, the relationship is not linear over the whole
range —4 < —Inx <4. Thus we do not have the strict
power-law behavior of (2). If one restricts the —Inx
variable to, say, two narrower ranges so that there is ap-
proximate linearity in each, then because of (13) the in-
termittency index ¢, at fixed g is smaller at the upper
range (smaller |a|), corresponding to less multiplicity
fluctuation. Note that this is the result of vertical
analysis in a fixed cell 8, and is indirectly related to what
one expects in horizontal analysis, where small la| im-
plies long correlation length £ and therefore long-range
order.

From Fig. 1 we also see that for fixed x the degree of
intermittency increases with g. That is, of course, a gen-
eral property, since only events with n = g can contribute
to (1), so high g selects events with high multiplicity in
the cell under consideration, i.e., large fluctuations from
(n).

In a heavy-ion collision the temperature 7 decreases as
the system expands. Assuming that a thermalized quark-
gluon plasma is formed at high 7, the system goes
through both confinement and chiral phase transitions, as
T is lowered. In lattice-gauge calculations it is found
that they may be weak first-order or second-order transi-
tions [17]. We assume that the GL description is ade-
quate for our purpose here. Since T decreases with time,
the values of a and b in Fl¢]l would vary with time ac-
cordingly. Thus it seems that we cannot predict the
values of ¢, to be checked by experiment, since it is un-
certain what values of @ and b are relevant to the obser-
vation.

However, the power-law behavior of F,; can be general-
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FIG. 1. InF; vs —Inx for various values of g.
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ized from (2) to [g(8)1%*, where g(8) can be any func-
tion of & [18]. More specifically, we can consider the
Ochs-Wosiek plot for our F;. We show in Fig. 2 a plot of
InFy vs InF,, which reveals remarkable linearity for all g
over nearly the entire range of —Inx exhibited in Fig. 1.
Thus we have found strict power-law behavior in

FyocF5 (14)

where B, =¢,/¢, are independent of a and b, even though
¢4 are not. The linearity in Fig. 2 is lost at large x for
which either a? is too large to describe a system near
phase transition or & is too large to be regarded as an in-
divisible cell to justify (9); however, in the opposite ex-
treme the linearity persists even in the limit x — 0.

It should be recognized that the strict power law (14)
implies that the indices B, are not only independent of &
but also of the dimension of the cell in phase space. If we
had integrated over one or two dimensions first before
making the intermittency analysis, our treatment of the
problem would still have been the same, so the same
values for B, would result. This independence of the
number of dimensions has been noted by Ochs [19] as a
phenomenological regularity in the experimental data of
e*e ™, up, pp, and AA collisions, in none of which has
the formation of quark matter been claimed. Here we
have proven it to be true in the GL description of
second-order phase transitions, at least for vertical
analysis with only the potential term in (9).

For heavy-ion collisions aimed at creating quark
matter, what is most significant about (14) is that it is in-
dependent of the parameters a and b, provided @ <0 and
b>0. Since they are T dependent, B, is therefore in-
dependent of T for T < T,. This is an important property
because we do not know the time (or 7) at which a
detected hadron is decoupled from the system. Thus the
T independence elevates B, to play a fundamental role in
the characterization of the phase-transition process. Of
course, there are phenomenological details that may com-
plicate the verification of the theoretical values of .
But at least for an ideal system describable by the GL
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FIG. 2. InF, vs InF for various values of g.

theory we have a clean prediction here on quantities that
are directly measurable.

For a quantitative description of the result we show in
Fig. 3 the values of B, as a function of g, as determined
from the slopes in the straight-line portion in Fig. 2 for
0.15<InF,<0.4. It can be extremely well fitted by

Ba=(g—1)" v=1.304, (15)

as shown by the solid line. Thus we have obtained an ex-
ponent v that describes the general consequences of the
GL phase transition independent of the details of the GL
potential after 7 goes below T.

The exponent v is not a critical index in the conven-
tional sense as to how such an index describes the behav-
ior of an order parameter in the neighborhood of 7.
Nevertheless, v shares the same significance in that it is
universal (i.e., independent of the details of the system)
and completely characterizes the behavior of a measur-
able quantity at T just below 7.

If we use the “anomalous fractal dimension” defined by
dy=¢,/(g —1) [20,21], then we have

dgldy=B,/(g—1)=(g—1)""", (16)

which is not 1 (v=1), as obtained by Satz for the 2D Is-
ing model [11], nor any other constant for a monofractal
conjectured in [9] as a signature of quark-matter forma-
tion. The critical behavior of B, in (15) does not belong
to the Levy stable law [22] for any u in the formula

Be=(g"—q)/(2*—2). (17)
Ochs [19] found that nearly all data on ¢, for e *e =, up,
hh, pA, and AA fall in the range 1.3<u<1.6.
Representative points from the nuclear data [23,24] are
shown in Fig. 3 for comparison. Interestingly, they also
follow the power-law behavior (15). The value of v for
the data is v=1.55%+0.12, 20 away from the critical
value 1.304. Thus one may conclude that quark-matter
formation has not yet been achieved, although a definitive
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FIG. 3. B4 vs q. Dots are determined from Fig. 2; the solid
line is a fit. The data points are from Refs. [23,24].
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criterion still awaits a more extensive treatment that in-
cludes the last term of (8), not considered in (9).

The application of our result to realistic heavy-ion col-
lisions is not straightforward. While it is very interesting
that the value of v is independent of the coefficients a and
b, it does not by itself indicate whether the system has
gone through a phase transition from quark matter at
T > T, to hadrons at T < T,, or has never reached T.
from below. The two scenarios may have other features
that are distinctive, such as {p7), which is expected to be
higher in the former case due to the extra time available
for collective flow through the transition point. If the sys-
tem has never entered a thermalized quark phase, then
the chiral phase transition has never occurred with a
change of vacuum, and the GL description would seem
inappropriate. What this work indicates is that, if the
system can be described by the GL theory, there is an ex-
pected value for v. Thus if the measured value of v is
significantly different from the critical value, then obvi-
ously the GL description is inappropriate, and second-
order phase transitions can most likely be ruled out. On
the other hand, if it is close, then what is gained is that
the system acquires the GL formalism for its description
and phase transition may well be close at hand. In either
case we have shown the importance of studying intermit-
tency to characterize dense systems.
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