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We apply a recently computed nucleation rate to a first-order deconfinement/chiral-symmetry
restoring phase transition in a set of rate equations to study the time evolution of expanding quark-
gluon plasma as it converts to hadronic matter. At energies of the BNL Relativistic Heavy Ion
Collider, the system must supercool about 20% below T, before nucleation of hadronic bubbles is
sufficiently rapid to overcome the expansion rate. The system reheats to near 7T¢, nucleation turns
off, and the transition is completed by growth of previously nucleated bubbles. Based on Bjorken
hydrodynamics and on current parameter values, we find the transition generates 30% extra entropy.

PACS numbers: 24.85.+p, 12.38.Mh, 25.75.+r, 64.60.Qb

The primary reason for colliding large nuclei like gold
or lead at high energy is to study the behavior of quan-
tum chromodynamics (QCD) at high energy density. A
standard picture [1] of a central collision at RHIC (100
GeV/nucleon in the c.m. frame for the Relativistic Heavy
Ion Collider under construction at Brookhaven National
Laboratory) or at LHC (3 TeV/nucleon in the c.m. frame
for the Large Hadron Collider proposed at CERN) is
that the two nuclei pass through each other, creating
a hot plasma of quarks and gluons. This plasma sub-
sequently cools by expanding hydrodynamically, mainly
along the beam axis. Eventually the energy density be-
comes low enough that the quarks and gluons hadronize;
the hadrons then fly off to the detectors. If there is a
first-order thermodynamic phase transition [2], the asso-
ciated latent heat must somehow be gotten rid of before
the hadronization can be completed. Usually an ideal-
ized Maxwell construction for two-phase equilibrium is
invoked as a model of the hadronization process in fluid
dynamical approaches [3]. However, it is by no means
clear that the QCD nucleation rate is large enough for
this idealization to be anywhere near reality. For com-
parison, nucleation of the QCD transition has been ex-
tensively studied in the early Universe where the time
scale is of order 107° to 107° sec [4]. In nuclear colli-
sions the time scale is of order 10~23 sec.

Currently the initial part of this collision picture is be-
ing confirmed quantitatively. Perturbative QCD is com-
bined with relativistic transport theory to study the early
stage of nuclear collisions by computer simulation [5].
One indeed finds a nearly equilibrated and baryon-free
plasma of about 150 fm® with an initial temperature of
300 to 350 MeV. This is about twice the expected critical
temperature for the phase transition. It is the purpose of
this Letter to study quantitatively what happens when
the temperature drops to 7, where a phase mixture of
quarks and gluons and hadrons is expected to develop.

The rate for the nucleation of the hadronic phase out

of the plasma phase can be written as [6-8]
I=TIpe AR/T, (1)

where AF, is the change in the free energy of the system
with the formation of a critical size hadronic bubble and
Iy is the prefactor. In general, statistical fluctuations at
T < T, will produce bubbles with associated free energy

AF = 4?“[%(:/") — pn(T))R® + 47 R%. 2)

Here p is the pressure of the quark or hadron phase at
temperature T', and o is the surface free energy of the
quark-gluon/hadron interface. Since p,—pp < 0 it follows
as usual that there is a bubble of critical radius

20
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Smaller bubbles tend to shrink because the surface energy
is too great relative to volume energy, and larger bubbles
tend to grow. The free energy of the critical size bubble
is therefore

(3)

AF, = g-ﬂ'aRf. (4)

The prefactor has very recently been computed by us in
a course-grained effective field theory approximation to
QCD to be [§]
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where 7, is the shear viscosity in the plasma phase, ; is a
correlation length in the plasma phase, and Aw is the dif-
ference in the enthalpy densities of the two phases. This
prefactor is very similar to that calculated by Kawasaki
[9) and by Turski and Langer [10] for nonrelativistic fluids
near their critical points. The nucleation rate is limited
by the ability of dissipative processes to carry latent heat
away from the bubble’s surface, as indicated by the de-
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pendence on the viscosity. At the critical temperature,
R, — o0, and the rate vanishes. The system must su-
percool at least a minute amount in order that the rate
attain a finite value.

Given the nucleation rate one would like to know the
(volume) fraction of space h(t) which has been converted
from QCD plasma to hadronic gas at the proper time
t, which is the time as measured in the local comov-
ing frame of an expanding system. This requires kinetic
equations which use I as an input. Langer and Schwartz
[11] have discussed such kinetic equations and compared
predictions of their theory to cloud-point data in near-
critical fluids. Guth and Weinberg [12] proposed a for-
mula for h(t) and applied it to cosmological first-order
phase transitions. One may find other kinetic equations
in the literature. It does not seem possible to derive
such kinetic equations from first principles. The non-
relativistic kinetic equations are inadequate because in
relativistic systems the latent heat per unit volume can
be a significant fraction of the total energy density, which
is obviously not the case in ordinary atomic systems. We
will motivate what we believe is a more accurate kinetic
equation than the one used by Guth and Weinberg below.

The nucleation rate I is the probability to form a bub-
ble of critical size per unit time per unit volume. If the
system cools to T, at time ¢, then at some later time ¢ the
fraction of space which has been converted to hadronic
gas is

¢
W) = [ eI - AEIV(E ). (©)
te
Here V(¢,t) is the volume of a bubble at time t which
had been nucleated at the earlier time t’; this takes into
account bubble growth [13]. The factor 1 — h(t’) takes
into account the fact that new bubbles can only be nu-
cleated in the fraction of space not already occupied by
hadronic gas. Equation (6) can most easily be “derived”
by discretizing time. This conservative approach does not
take into account collisions and fusion of bubbles, which
would tend to decrease the time needed to complete the
transition [14].

Next we need a dynamical equation which couples the
time evolution of the temperature to the fraction of space
converted to hadronic gas. For this we use the longitu-
dinal scaling hydrodynamics of Bjorken [1]. The time
evolution of the energy density e is

de w

priird (7)
This assumes kinetic but not phase equilibrium, and is
basically a statement of energy conservation. We express
the energy density as

e(T) = h(t)en(T) + [1 — h(t)]eg(T), (8)

where ey, and e, are the energy densities in the two phases
at the temperature T, and similarly for w.
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We also need to know how fast a bubble expands once
it is created. This is a subtle issue since by definition
a critical size bubble is metastable and will not grow
without a perturbation. We shall only attempt a crude
description of this growth process here. The growth of
bubbles has been studied numerically with relativistic hy-
drodynamics by Miller and Pantano [15]. After applying
a perturbation, the bubble begins to grow. As the radius
increases, the surface curvature decreases, and an asymp-
totic interfacial velocity is approached. The asymptotic
radial growth velocity was determined numerically. Their
results are consistent with the growth law

u(T) = o[l = T/Te)*?, (%)

where vy is a model-dependent constant. For numerical
purposes we shall use vg = 3¢, which corresponds to their
parameter a = 1. This expression is intended to apply
only when T > %TC so that the growth velocity stays be-
low the speed of sound of a massless gas, c¢/v/3. Actually,
the interior of the bubble is at a slightly higher temper-
ature than the exterior; we neglect this small tempera-
ture difference. Our simple illustrative model for bubble
growth then is

3

V(t ) = ég_ (R,,(T(t')) + /t , dt”v(T(t”))) (10)

This at least has the expected qualitative behavior: the
closer T is to T, the slower the bubbles grow. At T, there
is no motivation for bubbles to grow at all since one phase
is as good as the other.

In this Letter we avoid a detailed discussion of compli-
cated equations of state. We simply model the hadronic

phase by a massless gas of pions, and the plasma phase
by a gas of gluons and massless quarks of two flavors,
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FIG. 1. The characteristic nucleation time as a function of
temperature corresponding to Eq. (11). In a nucleus-nucleus
collision the onset of nucleation is impeded until T'/T. = 0.95.
This characteristic time of about 100 fm/c should be com-
pared to the typical hadronic time scale of 1 fm/c.
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with a bag constant B to simulate confinement dynam-

ics. We use the same parameters as in (8], namely,

o = 50 MeV/fm?, BY/4 = 235 MeV, ¢, = 0.7 fm, and

ng = 14.4T3. This gives T, = 169 MeV.

In Fig. 1 is plotted the nucleation time as convention-
ally defined, namely,
1 4 4

T, = —?’—R* I.

nuclea (11)
This characteristic time scale obviously neglects bubble
growth. It is quite clear that on the time scale of nuclear
collisions the matter must supercool by at least 5% before
nucleation can begin.

One must distinquish between the nucleation time and
the time it actually takes to complete the transition, as
emphasized by Langer and Schwartz [11]. In Fig. 2 we
show the results of numerically integrating the coupled
dynamical equations. If the plasma is first equilibrated
at a temperature Tp = 27, at time to = 3/8 fm/c as
suggested by the uncertainty principle and by detailed
simulations [5], then the plasma will cool according to
the law T'(t) = To(to/t)'/° until the time t. = 8t = 3
fm/c. The matter continues to cool below T, until T
falls to about 0.957, when noticeable nucleation begins.
When the temperature has fallen to about 0.87,, bubble
formation and growth is sufficient to begin reheating the
system, due to the release of latent heat. When the tem-
perature exceeds about 0.957, nucleation of new bubbles
shuts off. We remark that during this stage of the transi-
tion the radius of critical sized bubbles is on the order of 1
fm [8]; this is a nontrivial result since bubbles much larger
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FIG. 2. The temperature as a function of time in a cen-

tral high-energy nucleus-nucleus collision. The solid curve is
the idealized adiabatic Maxwell construction corresponding
to complete phase equilibrium. The dashed curve is a result
of solving the coupled rate equations described in the text.
The matter reheats due to the release of latent heat, and ap-
proaches T¢ as the transition completes.

than several fermi would not be contained within the nu-
clear diameter. The transition continues only because of
the growth of previously created bubbles. However, the
temperature must remain somewhat below T in order for
these bubbles to grow. Compared to the idealized adi-
abatic Maxwell construction of phase equilibrium at T,
the finite transition rate delays completion of the tran-
sition by about 11 fm/c. In the Bjorken hydrodynamics
the proper volume of the system increases linearly with
time, V' (t) = V(t;)t/t.. Since completion of the phase
transition is delayed from 37 to 48 fm/c, and the entropy
density at completion is the same, 30% extra entropy is
generated.

In Fig. 3 we show the fraction of space occupied by
hadronic matter as a function of time. Again the time
delay compared to the adiabatic Maxwell idealization is
apparent.

In conclusion, we have demonstrated that if QCD un-
dergoes a first-order phase transition then it is quite likely
(with present parameter values and current understand-
ing of phase transition dynamics) that the hot matter
created in an ultrarelativistic nuclear collision will pass
through a phase mixture not unlike the idealized Maxwell
construction. Clearly the input parameters and the equa-
tion of state in each of the two phases can be improved
upon with time. Also, improvements to the dynamics
can be made, such as the incorporation of transverse ex-
pansion [16] and bubble interactions. It is possible to
study the space-time evolution of the phase transition
with hadron interferometry [17] and/or correlations [18].
It would be quite exciting to decide the issue of the exis-
tence of a QCD phase transition experimentally.
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FIG. 3. The volume fraction of space occupied by ha-
dronic matter as a function of time. The solid and dashed
curves correspond to those in Fig. 2.
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