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Determination of the Strong Coupling Constant from the Charmonium Spectrum
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Lattice gauge theory techniques have recently achieved sufficient accuracy to permit a determination
of the strong coupling constant from the 1P-1S splitting in the charmonium system, with all systematic
errors estimated quantitatively. The present result is ayg(5 GeV)=0.174 £0.012, or, equivalently,
A%= I60f§; MeV (MS denotes the modified minimal subtraction scheme).

PACS numbers: 12.38.Gc, 12.38.Aw, 14.40.Gx

A central task in understanding quantum chromo-
dynamics (QCD) is the determination of its coupling con-
stant, g2. The Particle Data Group quotes values for
a;(5 GeV)=g?/4r in the range 0.18-0.22 [1]. Recent
measurements at the CERN e Te ™ collider LEP yield
values in the range 0.20-0.24 [2]. Most perturbative
determinations of g2 contain nonperturbative contamina-
tions which become small only at high energies. On the
other hand, high-energy determinations yield g? at lower
energies only imprecisely. Lattice gauge theory calcula-
tions provide a nonperturbative means of determining the
strong coupling constant from low-energy quantities.

In principle, any lattice calculation of a mass or energy
E allows a determination of the strong coupling constant.
The lattice calculation yields the dimensionless quantity
aE, where a is the lattice spacing which is determined by
comparing aF with the experimentally measured value
for E. The bare lattice coupling constant g¢ at scale a
may then be converted into one of the more familiar
definitions of the coupling constant using known pertur-
bative results [3,4]. In practice, most existing lattice cal-
culations contain systematic errors which are difficult to
analyze quantitatively. Consider, for example, the obvi-
ous case of the proton mass. Lattice calculations have
not yet been done with quark masses as light as their
physical values. Chiral perturbation theory calculations
[5] indicate that at pion masses of around 400 MeV,
where lattice calculations are often done, the proton mass
is reduced by a term (of order m,}) of around 100% of its
physical, light pion value. Similarly, the most accurate
lattice calculations to date have been done ignoring the
effects of sea quarks. Some chiral quark model calcula-
tions [6] estimate that the proton mass may be altered as
much as 30% by the effects of the strange quarks in the
sea, let alone the light quarks. Whether or not these cal-
culations are quantitatively reliable, the point is that
the approximation of ignoring the sea quarks (the
“quenched” approximation) introduces potentially large
systematic errors for the light hadrons which are difficult
to analyze and control.

Heavy quark systems offer the best opportunity for
determining the strong coupling constant with present
day lattice calculations [7]. For these systems no extrap-
olation to light valence quark masses is necessary, and er-

rors arising from the omission of sea quarks and also
from the finiteness of the lattice spacing may be sys-
tematically analyzed and quantitatively estimated with
some input from phenomenology, as we discuss below.
As lattice calculations improve, the phenomenological as-
pects of the corrections and error analysis will ultimately
be removed. A rigorous program to extract the strong
coupling constant from lattice gauge theory entirely from
first principles is being formulated by Liischer ez al. [8].

The cleanest quantity in heavy-quark systems from
which to extract the strong coupling constant is the split-
ting between the spin averaged masses of the 1S and IP
states. This splitting is insensitive to errors in spin-
dependent interactions which are induced by the finite
size of the lattice spacing. It is also known to be quite in-
sensitive to any errors in the definition of the quark mass,
since the 1P-1S splittings in the y and Y systems are al-
most identical. Higher-order finite-lattice-spacing errors
such as those resulting in effective p* interactions and
four-fermion interactions may be easily analyzed pertur-
batively using potential models and Coulomb gauge lat-
tice wave functions, and if necessary removed by correc-
tions to the lattice action.

We have calculated this splitting using standard Monte
Carlo techniques at three lattice spacings (or, equivalent-
ly, three values of B=6/g4). The smallest lattice spacing
used corresponds to 8 =6.1 on lattice volumes of 24* with
25 gauge configurations separated by 8000 pseudo-heat-
bath sweeps. The larger lattice spacings correspond to
B=5.9 on volumes of 16* and B=5.7 on volumes of
123x24, each with 25 configurations separated by 2000
pseudo-heat-bath sweeps.

The Wilson action for fermions was used with the
O(a) correction term, — (i/2)cyZ,,F,,y, added [9].
[Addition of this operator to the action suffices to correct
O(a) errors for Wilson fermions.] The coefficient ¢ was
set to 1.4 rather than its tree-level value ¢ =1 on the basis
of mean-field theory estimates of the higher-order correc-
tions. For nonrelativistic fermions, it contributes mainly
an additional o- B interaction to the quarks. The spin
averaged level splitting on which this paper is based is ex-
pected to be very insensitive to this correction. On the
other hand, such spin splittings as the y-n. splitting
which we have also investigated are very sensitive to it
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The lattice spacing for each value of B was obtained by
calculating in lattice units the difference of the spin aver-
aged mass of the 1S states (the J/y and the n.) and the
mass of the recently discovered spin singlet 1P state (the
h.) [11], and then comparing with the experimentally
measured splitting, M, —(M,+M, )/4=458.6+0.4
MeV. Coulomb gauge wave functions were used to
create and destroy the meson states to reduce errors from
excited states. Since quarks in the charmonium system
are nonrelativistic, it is not surprising that these waves
give a very good approximation to the full states. No in-
dications of contamination of the two point functions
from excited states were seen after a separation in Eu-
clidean time of one lattice spacing for the S states and
two lattice spacings for the P states. The analysis was
based on separations of at least three lattice spacings.
For more details, see Ref. [10].

From the lattice spacing a and the bare lattice coupling
constant g¢, the MS (modified minimal subtraction) cou-
pling at scale n/a may be obtained using the one-loop
perturbative formula g2 (n/a) =gg 2(1 — + g2 +0.025
[3,4]. The background field calculation of this correction
[4] shows that it is dominated by the term in parentheses,
which is the perturbative expectation value of the pla-
quette (TrUp). We have therefore substituted the known
nonperturbative value of the plaquette at each B to
correct for higher-order effects in the relation between
the bare and MS coupling constants [12], using

—2—“1—— = %(TFU}))Mc'*'0.0ZS . (1)
gus(n/a) g6
(The values for {TrUp)mc are 0.549, 0.582, and 0.605 at
B=5.7, 5.9, and 6.1, respectively.) This yields an addi-
tional correction to the MS coupling constant (11% of the
final value) which is much smaller than the one-loop
correction (about 44%) but not negligible.
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FIG. 1. The wave function of the y meson.
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Figure 1 shows the Coulomb gauge wave function of
the y meson calculated on the 244 B=6.1 lattices. It is
probably not controversial that finite volume errors are
negligible for the lattice sizes used. To check this, a low
statistics calculation was done at S =6.1 on a volume of
16* which yielded a value of the 1P-1S splitting (10-
20)% larger than that on the 244 lattices. Figure 1 shows
that the wave function of the y is about a factor of 5
smaller at a distance of twelve lattice spacings (halfway
across the 24* lattice) than it is at eight lattice spacings
(halfway across the 16 lattice). Assuming that finite
volume errors fall roughly as the square of the wave func-
tion halfway across the lattice leads to the conclusion that
the errors on the 24* lattice are under a percent in the
spin splitting and therefore in Ags. This implies errors in
a of a fraction of a percent.

We have already noted that the spin averaged 1P-1S
splitting is very insensitive to the O(a) errors of the Wil-
son quark action. Further, we have used a corrected ac-
tion which minimizes these errors. It is therefore to be
expected that the most important finite-lattice-spacing er-
rors remaining will be of order a%. To test for the size
of these, the calculation was performed at three lattice
spacings. From the 1P-1S splitting, we obtained a '
=1.15(8), 1.78(9), and 2.43(15) GeV at $=5.7, 5.9, and
6.1, respectively. The errors in parentheses are statistical
only. Using Eq. (1) and the parametrization for a; of the
Particle Data Group, values for A,% were obtained for
each lattice spacing. In Fig. 2 the results are plotted as a
function of a2 The value of A%=234 MeV after
extrapolation to a2=0 is about 4% larger than its value
at p=6.1. The statistical errors are not small enough to
distinguish between possible functional forms for the
finite a errors (e.g., a, a?, or a*), and we rely on theoreti-
cal prejudice in making the extrapolation in a’. We
therefore take the 4% difference between the extrapolated
value and the value at §=6.1 as a contribution to the sys-
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FIG. 2. A,%io—; as a function of a?.
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tematic uncertainty. The next step in removing this small
contribution to the uncertainty will be the evaluation of
the known discretization errors present in the lattice ac-
tion with the Coulomb gauge wave functions obtained
from the lattice calculations, to verify or improve the
functional form of the extrapolation in Fig. 2.

The final and largest source of uncertainty arises from
the conversion from the zero-light-quark running cou-
pling constant of the lattice calculation to the four-quark
running coupling of the real world. It is more convenient
to discuss this uncertainty in terms of g? rather than A.
The fact that the system is nonrelativistic implies that the
dominant effects of the omission of sea quarks lie in their
effect on the static potential. We use this effect as an es-
timate of the corrections and uncertainty arising from
this source. The adjustment of the bare parameters of
the lattice action to reproduce experimental physics is
really the adjustment of the parameters in the effective
action at the physics momentum scale to be correct.
Since the B function of the quenched (zero light quark)
lattice theory is slightly too large, the short distance cou-
pling constant of the quenched lattice theory must be
slightly too small. It is this discrepancy which must final-
ly be estimated. In perturbation theory, requiring that
the effective actions of the lattice and the real world
match at the physics scale u; requires approximately that
the running coupling constants match at this scale. The
required difference in the running couplings at scale u, is
then given by

ag = [ ding 1™ — B+ (B — pO)g 2+ -1,
@

where

B’ =(11— 3 ny) 1672,

B =(102— 2 np)/(1672)2.

From potential models we know that the typical momen-
tum transfer in J/w mesons is around u; =400 MeV.
Most of the required correction arises from the large u
region where perturbation theory is valid, and is therefore
reliably given by Eq. (2). Integrating the correction from
#2=5 GeV down to 750 MeV, the scale of typical quark
momentum in the J/y, and making the appropriate
change from the four-quark to the three-quark g function
at the charmed quark mass, gives a contribution to the
correction of Ag 2= —0.080. (gy, the coupling constant
defined from the heavy-quark potential, was used in the
integration.) This is certainly an underestimate of the
correction, since the f function is quite convergent in this
region and 750 MeV is the largest momentum scale in
the systems we are studying. If we take u; =400 MeV
as the best guess for the appropriate matching scale, we
obtain an additional correction of Ag ~2= —0.060. This
large contribution from a small region of integration

arises from the fact that 400 MeV is near the fictitious
pole in the two-loop perturbative coupling constant, caus-
ing g? to begin to blow up near the end of the integration
region. (At u; =400 MeV, we obtained g¢ =45.) Al-
though the true contribution of the low-energy region to
the coupling constant correction cannot be reliably es-
timated perturbatively, it is certainly not divergent, so
this is almost certainly an overestimate of the true correc-
tion. Since the effects of light quarks on the potential are
relatively mild both at short distances (known from the
perturbative B functions) and at large distances (known
from comparing the string tensions obtained from Regge
phenomenology and from quenched lattice calculations),
it is implausible that their effects in the intermediate re-
gion are overwhelmingly severe. We therefore take these
two estimates as upper and lower bounds on the true
correction, giving Ag “2=—0.110 *0.030. The approx-
imate size of this correction, 24%, clearly makes sense,
since if the comparison scale 5 GeV is replaced by an
asymptotically lar%e value, py, the obtained correction
must approach (ﬂo"’) — B3V /BEY = % (n;/11) = 24% for
ny=4. Over the next few years, this largest source of un-
certainty will be eliminated by the inclusion of sea quarks
in lattice calculations. In the short term, it may be
clarified and, we hope, reduced, with the use of potential
models and a study of the static potentials of the
quenched and unquenched lattice theories.
Our final result is

ags(5 GeV) =0.174 +0.012. 3)

This corresponds to A2 =160%%] MeV, using the pa-
rametrization of the Particle Data Group. The known
corrections and uncertainties are summarized in Table 1.
Each correction ¢; is defined to mean that the corrected
coupling a; is given by a; =(1+¢;)a;—,. The uncertainty
is dominated by the uncertainty in relating the zero-
quark coupling constant of the lattice calculation to the
four-quark coupling constant of the real world. Over the
next few years, Monte Carlo simulations including the
effects of sea quarks will eliminate this currently dom-
inant contribution. They will leave residual errors of only

TABLE I. Summary of corrections and uncertainties in the
determination of a%. Note that all of the corrections have the
same sign, raising the obtained value of a.

Source Correction Uncertainty
gé— gis 44%
(one loop, Refs. [3,4])
gé— g 11%
(Monte Carlo correction, Ref. [12])
gV —g@ 24% 6.6%
Statistics .- 2%

Finite lattice spacing 1% 1%
Finite volume B e

731



VOLUME 69, NUMBER 5

PHYSICAL REVIEW LETTERS

3 AUGUST 1992

(2-3)%, much smaller than those currently associated
with the convergence of perturbation theory.

As lattice and perturbative determinations of the
strong coupling constant improve, it will eventually be-
come necessary to replace the MS coupling constant with
a standard of comparison defined from some physical pro-
cess. This will insure that uncertainties such as those as-
sociated with the convergence of perturbation theory,
which are intrinsic to only one regulator, not be propagat-
ed to all determinations. The process used for the stan-
dard of comparison should be one which is easy to calcu-
late in all regulators. The heavy-quark potential at short
distances is a likely candidate. We have used perturba-
tion theory more than once in the above calculation, but
it plays an essential role only in the conversion of the lat-
tice coupling constant to the MS coupling constant. We
intend to replace this part of the calculation with a non-
perturbative determination of the coupling utilizing the
heavy-quark potential in a future publication. We have
therefore not attempted the difficult task of estimating
the uncertainty arising from the truncation of perturba-
tion theory, and leave that additional piece of error es-
timation to the reader.

Recently, a similar calculation has been performed for
both the y and Y systems using the nonrelativistic formu-
lation of lattice fermions [13]. For the Y system, the sys-
tematic errors and corrections are quite different from the
ones reported here. The results are compatible.

Extrapolating to the mass of the Z, we obtain
aps(Mz) =0.10520.004. This is a little more than 2¢
below the combined results from LEP: a(M,)=0.119
+0.006 [2].
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