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Analytic Solution of the Random Ising Model in One Dimension
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An analytic expression is derived for the Lyapunov exponents of the product of random transfer ma-

trices related to the Ising model with quenched disorder in one dimension. We find a deterministic map
which transforms the original system into a new one with zero external field and constant coupling. The
free energy and the rate of correlation decay are thus obtained in terms of an exponentially convergent
series. Our results can be generalized to the product of random matrices with nonzero entries.

PACS numbers: 05,50.+q, 02.50.+s, 05.45.+b

Products of random matrices appear as the natural tool
for the study of disordered systems as well as of chaotic
dynamical systems [1,2]. In this context, the calculation
of the spectrum of the Lyapunov characteristic exponents
(LCE) has great relevance. However, exact solutions are
known only for very particular cases [3,4], even if some
nonperturbative analytic results have been recently ob-
tained (the so-called microcanonical method [5] and the
cycle expansion of the Ruelle zeta function [6]). Here we

present a method which allows one to determine the LCE
in terms of an exponentially convergent series, for positive
random matrices. Although we are not able to find a
closed expression of the analytic function determined by
the series, its terms can be computed up to obtain the
LCE spectrum with the desired precision.

The object of our study is the spectrum of the product

GJv =+;-|T(i) of N independent identically distributed
dxd random matrices T(i) The Ly. apunov exponents
Xl ) ) 2, . . . , )j.d are defined as the logarithm of the abso-
lute values of the eigenvalues of the matrix (G)GJv) '

in the asymptotic limit N ~. The multiplicative er-
godic theorem of Oseledec [7] ensures that this limit

spectrum exists and is nonrandom for almost all realiza-
tions (i.e., all realizations a part of a set of zero probabili-

ty measure) of the Gjv's, which are themselves stochastic
variables. In particular, the maximum LCE is the rate of
exponential divergence of the norm of a generic vector
z C R under the successive applications of T(i):

IGwzl
kl = lim —ln = lim —ln

Izl

where the overbar indicates the average over the diAerent
disorder realizations. In the context of statistical
mechanics, this property is known as self-averaging.

For the one-dimensional Ising model with random
fields h and/or random nearest-neighbor couplings J, one
deals with 2x2 matrices, and the computation of the two
Lyapunov exponents gives the free energy and the decay
rate of the spin-spin correlation. In practice we are able
to find a mapping [8] to transform an Ising model into a

PH = —g J;cr;o; ii+h;cr, , (2)

where P is the inverse temperature, J; are nearest-
neighbor couplings, and h; are external fields (for in-

stance, independent identically distributed random vari-

ables). The spins o; are dichotomic variables which can
take the values l with equal probability. The partition
function for a given realization of J's and h's is

Z~=2 (exp( 13H)), wher—e the average () is per-
formed over the 2 spin configurations. In fact, it can be
shown that the free energy for almost all realizations is

given by the quenched average over the disorder:

l . l
PF = lim —I—nZiv = lim —TrGiv =Xl

N N
(3)

since Ziv is the trace of the product GN of random

transfer matrices of the form

T(i) = exp(J;+ h;) exp( —J; —h;)

exp( —J;+h;) exp(J; —h;) (4)

In the following, the elements of T are indicated by
exp(J;o; a;+ i + h; o; ) with obvious notation. The calcula-
tion of the quenched free energy of the random Ising
model is thus equivalent to that of the maximum
Lyapunov exponent X]. In a similar way, one has that the
difI'erence of the two Lyapunov exponents controls the de-
cay rate (cr;o;+,) —exp[ —(Xl —X2)r], for almost all real-

new one with smaller random fields and couplings.
Iterating this mapping, one tends to a fixed point corre-
sponding to a system with zero external field and constant
coupling which has a trivial solution. With the same
method, one can obtain the LCE spectrum of the product
of generic positive 2&2 random matrices since they can
always be written as transfer matrices of an appropriate
Ising model.

To be explicit, consider an Ising model on a one-

dimensional lattice with periodic boundary conditions and

H amiltonian
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g T(i) =exp Q I; +T'(i), (s)

where T'(i) is a transfer matrix with new couplings and
fields h and J . One has that h and J and I; are func-
tions only of the old couplings and fields on the sites i —1,
i, i + 1.

(2) We iterate the mapping. It has an attractive fixed

point at h; =0 and J; =J for all sites i, where J* de-
pends on the starting h's and J's.

(3) The solution is given by

izations.
Let us briefly summarize the steps of our method.
(1) The initial couplings [J),J2, . . . , J)v] and fields

[h), h2, . . . , hN} are mapped into new ones, so that

ear form o;o;+) in T(i) as a form which is linear in o;
and ri;. Indeed, the elements of T(i) satisfy the identity

exp(J;o;o;+) +h;o;. ) =(exp[A;r);(cr;+ o;+) )

+8;+h;cr;])„, (7)

By means of (7) we compute the "thermal" o average

where ()„indicates the i) average. Namely, after the

average, the right-hand side of (7) becomes

cosh[A;(o; +o';~))]exp(8; + h;o;)

leading to two independent equations (for instance, put-

ting cr; =1 and o;+) = ~ 1) with the solution

8;= —J;, A;= —,
' cosh '(e ').2Ji

+T(()=exp g Q I
m li

' N
exp(J ) exp( —J*)

exp( —J*) exp(J )

N

(e ™),=
( ()exp )A;q; (cr+ e ~ ~ ) + ))+he)

g lX

(6)
where I;( ) is obtained after m iterations of the map and
depends on the starting couplings and fields on the 2m + 1

sites i —m, . . . ,i+m. The series in (6) is exponentially
convergent. Note that up to this point, the method can
be applied in the same way to find the solution for con-
stant, quasiperiodic, or random fields and couplings.

(4) The most interesting case is fields and couplings
which are random variables extracted according to a
probability distribution p(h, J). In the thermodynamic
limit N , almost all starting realizations converge to
the same J*. Moreover, the sums over the sites are given

by disorder averages for self-averaging quantities like the
free energy, i.e., lim)v P;I;( )/N =I ' ' for all i' s

The main trick of the method is to introduce a second
set of spin variables g; which can assume values of + 1

with equal probability. This allows us to write the bilin-

h;
+ =(x in[cosh(xg; +yg;+I+h;+I)cosh(xg;

J(m+)) ( in cosh( g (m)+ g (m)+h (m())

where m is the iteration step and cosh(2A;( ))
=exp(2J; ). The averages over two auxiliary random
variables x and y which take value =+1 with equal
probability are introduced just in order to get a more
compact form of the expressions. Note that (13) is a
deterministic map with initial conditions J; =J;, h;
=h; and, at each step, the new fields and couplings de-
pend only on the old ones on the nearest-neighbor sites.
From (12) we can also derive the relation which gives I
as

I; +' = —J; +(Incosh(xh; +yA;+) +h;+())„
(i4)

Map (13) has a line of fixed points at h =0. In fact, for a
given disorder distribution p(h, J) when W ~, almost
all initial realizations of [J;] and [h;] converge under the

=ge '(cosh(A;ri;+A; — i);— +h;))„. (io)

We can now return from (10) to a product of matrices T'
of form (4), since it is always possible to find a set of con-
stants I;, H;, and K; which satisfy the identityh(„+„+h) r+H (~+~ )+~ ~.-'gi i —

1 gi —I i

Inserting (11) into (10), it follows that

N N

(e ~ ) =exp QI; +exp(J;r);ri;+)+h ri;) (12)

mapping to the same fixed point on this line, say, h; =0
and J; =J*, for all the lattice sites i As an exa. mple, the
flow of the averaged field and coupling for a random field

Ising model is shown in Fig. 1.
This is the second key point of our discussion. Indeed,

it solves the problem by reducing it to (6), i.e., to the di-

agonalization of the matrix with elements e ' "' (whose
eigenvalues are 2coshJ* and 2sinhJ*) plus the calcula-
tion of I ( along the map flow (m =1,2, . . . , ~).
Therefore the two Lyapunov exponents are

1). )
= g I ' '+in(2coshJ*),

m 1

X2= g I ' '+ln(2sinhJ*),
(is)

m

where exp(J ri;ri;+)+h ri;) are the elements of T'(i) and
the new fields and couplings h =H;+H;+), J——=K;+), as
well as I; are given by a mapping which can be obtained
from (11). After some lengthy but trivial algebra, one
finds

+yA —(+h )])
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FIG. 2. I vs m us&ng a log-1&near scale for the random
field Ising model with the same parameters of Fig. l.

(h (m)) a

FIG. 1. Random field Ising model with constant J=0.3 and
h =0.2 or h =0.4 with equal probability. Flow of [h ™I,J™
for m =0, 1, . . . , 10 (squares). The fixed point is h* =0,
J*=0.253. For comparison, there is also the corresponding
flow for the Ising model with constant field and coupling
J =0.3, h =0.3 (crosses).

—
h

(m+ I )/h (m)m= i I

is

C* =tanh(22*) =2e ' ' /e ' '+1, (i7)

and the Perron theorem ensures that X1&X2 at nonzero
temperature. C also controls the flow of J and I in the
neighbor of J* and I =0 since by a Taylor expansion of
(13) and (14) up to O(h ) one has

J(m+() —J™)——( (I —e 4J')(h (m) ) 2

F( +() ( (I + —4J )(hI(+m) ) 2

(i8a)

(i8b)

As a consequence of (18a) and (18b), J and I ™con-
verge to their asymptotic limits much faster than h

(the h convergence rate lnC* is half of the J and I con-
vergence rates). This is illustrated by Fig. I where we

have plotted the flow of J( ) and [h ( '], instead of h

Let us stress the physical significance of the fixed point.

implying J*=tanh ' exp[(X2 —X()/2].
%e still have to prove that the fixed point is attractive.

To do so, we linearize the first equation of (13) in the
neighbor of the fixed point, i.e., for h;-0 and J;-J*,
obtaining

+ ) =
2( tanh(2g +)(h,.™+h,.(+ I)

with A* =
2 cosh 'exp(2J*). Equation (16) implies an

exponential convergence of h ™to zero whenever the two

Lyapunov exponents are not equal, since the limit for
m ~of

Under the mapping, both a random and a pure system
are transformed into an equivalent Ising model at a tem-
perature —1/J* and zero magnetic field. Such a model

has a very trivial solution, and all the difficulties are in

the calculation of appropriate quantities along the trajec-
tory of the system toward the fixed point. However, in a
random system it is su%cient to follow the flow of the
average coupling and field, since one is interested in the
quenched free energy which is a self-averaging quantity.
Moreover, an explicit calculation gives that C =C*
+O(exp( —Am ) ). For practical purposes, this means
that after calculating few lr terms of the sum in (15), its
remainder can be estimated by a geometrical series since

(h (k+m) ) 2 —(h (k) ) 2C*2m

apart from corrections which are exponentially small with

k+m. One thus gets

QO k 1+ —4J
F(m) g F(m)+ (h (k)) 2

i=) 4
(19)

and a similar expression holds for J*. Figure 2 sho~s the
values of I~™as a function of rn for the random field Is-

ing model with the same parameters of Fig. l. The linear

shape of lnI~™as a function of m provides evidence that
the approximation (19) is already rather sensible for
small k. In this case, a numerical calculation which per-
forms the product of 10 random matrices gives
=0.8184 and A, 2= —0.5768 with an estimated error of
10 . The results obtained by the asymptotic extrapola-
tion (19) of the series truncated at m =10 are, respective-

ly, A. ( =0.8177 and X2 = —0.5775 (where h " '

=3.42. . . x 10,J*=0.253. . . , and C* =0.798. . .).
It is worth stressing that (17) implies degenerate

Lyapunov exponents if J*=~, indicating that the one-

dimensional random Ising model might exhibit a phase
transition at p=~. In fact, map (13) also works at zero
temperature after rescaling the variables J; —- J;/P,
h; h;/p, and taking the limit p ~. We can thus ob-
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tain the solution for the zero-temperature free energy
F = —limp X~(P)/P and decide whether a phase transi-
tion is present or not for a given disorder distribution
p(h, J). For instance, the random field Ising model can
be shown to have no phase transition in the presence of
strong disorder, i.e., probability distributions of the field
such that )h;)/P & 2J/P.

In conclusion, we have found a formal solution of the
random Ising model in terms of an exponentially conver-

gent series. The method used is reminiscent of the renor-
malization group (RG) in real space, a la Migdal and

Kadanoff, as our mapping transforms the original system
into a new one where the spin interactions are decreased
(in average). However, a RG approach uses block vari-
ables so that the number of spins decreases at each trans-
formation step, and in one dimension the fixed points cor-
respond to zero or infinite temperature (that is, J=~, or
J=O). On the other hand, the number of spins N
remains constant under our mapping, which has a non-

trivial fixed point corresponding to an Ising model of N
spins at finite temperature —I/J* and zero external field.

The speed of convergence toward the fixed point is

determined by the difference of the two Lyapunov ex-
ponents, which is the typical decay rate of the two-point
correlation functions. These considerations suggest that
our method has a general validity which can be useful in

the study of different one-dimensional random systems.
Indeed, it should be remarked that our results have a
straightforward application to any ensemble of random
matrices with nonzero entries since they can always be
written as matrices of form (4), while the case of ma-
trices with zero entries —which includes important phe-
nomena like the Anderson model [2]—is still far from be-

ing solved in our scheme. Moreover, the method can be

extended to random Ising models on a strip of width L by
considering 2 x2 transfer matrices, even if finding the
appropriate mapping equations is not trivial as L in-
creases. However, it is not difficult to find the mapping of
the L =2 strip with zero magnetic field and random cou-
pling which exhibits frustration phenomena, absent in one
dimension [9]. This could be a first step toward an ana-
lytic approach for two-dimensional disordered systems.
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