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Exchange Operator Formalism for Integrable Systems of Particles
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We formulate one-dimensional many-body integrable systems in terms of a new set of phase space
variables involving exchange operators. The Hamiltonian in these variables assumes a decoupled form.
This greatly simplifies the derivation of the conserved charges and the proof of their commutativity at
the quantum level.
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MfJAj AiMfJ MijAk +JMfJ for k &i,j (2)

where A; is any operator (including M~J themselves) car-
rying one or more particle indices. Then define the "cou-
pled" momentum operators

x; —p;+r g VJMJ, VJ= V(x( —xj)
J&f

(3)

with V(x) an as yet undetermined function. Note that

In one spatial dimension a class of integrable many-
body systems is known, referred to as the Calogero-
Sutherland-Moser systems [1-3]. They consist of many
identical nonrelativistic particles interacting through
two-body potentials of the inverse square type and its
generalizations, namely, the inverse sine square and the
Weierstrass two-body potentials. These models are relat-
ed to root systems of A„algebras [4]. Corresponding sys-
tems related to root systems of other algebras exist, but
their two-body potentials are not translationally and/or
permutation invariant [5]. We will restrict ourselves to
the A„systems. For a comprehensive review of these sys-
tems see Ref. [5].

Many of the systems above admit a matrix formulation
[5,6]. Using this formulation, a generalization of these
systems was found recently where the particles also feel
external potentials of particular types [7]. These systems,
apart from their purely mathematical interest, are also of
significant physical interest, since they are relevant to
fractional statistics and anyons [8], spin chain models [9],
soliton wave propagation [101, and, indirectly, to nonper-
turbative two-dimensional quantum gravity [11].

The purpose of this paper is to present an "exchange
operator" formalism for these systems which renders
their integrable structure explicit. Specifically, we will
write generalized momentum operators in terms of which
the integrals of motion assume a "decoupled" form. This
will allow for an easy proof of commutativity at the quan-
tum level.

Let [x;,p;j, i 1, . . . , N, be the coordinates and mo-
menta of N one-dimensional quantum mechanical parti-
cles, obeying canonical commutation relations, and let

M;J be the particle permutation operators, obeying

M =M-=M' M'=1fJ Jf fJ~ fJ

then V(x) must obey

v(x)t= —v( —x). (5)

Consider now a Hamiltonian for the system which takes a
free form in terms of z s, that is,

H= —g~ .
1

(6)
f

In terms of the original phase space variables, H takes
the form

H= —gp; +—g [iv;~(p;+pj)M(J+ V;JM;J+ V;J2]
1 2 1

2 i 2 i&j

VJI, M(p .
1

6 i+j&k+i

In the above, V'(x) is the derivative of V(x) and we
defined

ViJk =ViJVjk+ VJk Vk;+ Vk; V;J .

M;Jk is the generator of cyclic permutations in three in-
dices, that is,

Mijk =Mjki =Mkij =Mjik =Mij MJ'k .

If we demand that the above expression for H becomes
the sum of an ordinary kinetic term and potential terms,
the terms linear in p; should drop, and this will happen if

v( —x) = —v(x) . (10)

Finally, if we want the above Hamiltonian to contain only
two-body potentials, the function V(x) should satisfy

V(x) V(y) + V(y) V(z) + V(z) V(x)
= W(x) + W(y) + W(z), for x +y +z =0, (11)

where W(x) is a new symmetric function. H then takes
the form

the z; are "good" one-particle operators, that is, they
satisfy (2), since the remaining particle indices in (3) ap-
pear in a permutation symmetric way. If we impose the
Hermiticity condition on n;,

(4)
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0 =—g p; + g V;j + V~M;~ —Wj g Mjk (i 2)

and the commutator of z's is evaluated to be

[/r nl ] g v j/( [M J/( Mj k ]
k &i,j

(i 3)

Equation (11) is a well-known functional equation for
V which also emerges as a condition for factorizability of
the ground state of many-body systems [3]. It can be
readily solved through a small-x expansion and all its

solutions are available [12]. Here we consider in se-

quence the solutions of most interest.
Assume first that W(x) =0. Then (11) is solved by

V(x)

=Ibex

(i 4)

with I a real parameter, and the Hamiltonian takes the
form

l(I M;, )—
H= —gp, '+ g

/ / j) (x/ xj)
Define the totally symmetric quantities

In = n"
I

(is)

Since in this case Vjk =0 we see from (13) that the /r&

commu/e and therefore the I„also commute. Moreover,
since they commute with all M;j, their projections in the
bosonic or fermionic subspaces of the Hilbert space also
commute. In these subspaces the M;j simply become + 1

and 2 I2=0 becomes the Hamiltonian of a set of parti-
cles interacting through inverse square potentials of
strength I(l a 1). Further, the higher quantities I„pro-
jected in these subspaces become the integrals of motion

of the above Hamiltonian. Therefore these integrals
commute in these subspaces.

To show that these integrals commute in the full Hil-

bert space it suffices to notice that they are local opera-
tors, since they involve derivatives of at most nth degree.
To know their action on the wave function at any point it

suffices to know the wave function in a small neighbor-
hood around that point. Therefore, the fact that they

commute cannot depend on global information on the

wave function, namely, its symmetry or antisymmetry.
Thus, if they commute for bosonic or fermion states they
must commute unconditionally.

In the case W(x) =const, the solution for V is

V(x) =I cotax or V(x) = I cothax {i7)

depending on the sign of the constant. Choosing the posi-

tive sign, and making a =1 by appropriate choice of units,
we have in subspaces of definite symmetry

1 ~ 2+ ~ I(I+1) I2N(N —1)0=—~p;+~ I(j sin (x; —xj)
This is the Sutherland model of particles interacting
through inverse sine square potentials. In this case

V;jk =I and thus the m s do not commute. To show the
existence of conserved quantities, define the new opera-
tors

rr; =/r;+ I QM~j

which are also good one-particle operators and obey the
commutation relations

[/r( /rj ] 2I (/r/M/j M/I/r/ ) (2o)

The corresponding quantities I„constructed from m; can
be shown to commute as follows:

n —
1

a 0

=2I(n,"M;j —Mijn,")=2I(M;jnj" —rrj"M~j)

and thus

(2i)

(22)

m —l

( -aM -m+n —a —
I -a+nM m —a —1)-

ija 0

m —l m+n —
1

-aM -m+n —a —
1

i,j a 0 a n

Antisymmetrizing (22) explicitly in n and m, we get

(23)
m —I m+n —l n —l m+n —

1

[r„,r ]=I+ g — g —g+ g n;M, jn,
'" '=O.

i,j a 0 a n a 0 a m

Therefore the In commute. In subspaces of definite symmetry, on the other hand, they reduce to combinations of I„,
e.g. )

l1 =I1 T IN(N 1), Ip =12 T- 2l(N I )I/+I N(N I ), etc. (24)

Therefore the I„commute as well. By repeating the ar-
gument above, or simply by analytic continuation, we can
also deal with the cothax solution in (17) which corre-
sponds to the inverse hyperbolic sine square potential.

A singular solution of (11) for W(x) a negative con-
stant is

r

which leads to the well-known system of particles with

mutual delta-function potentials [13]. It can be treated
as above, with some extra care to possible singularities.

Finally, consider the operators

V(x) =lsgn(x) (2s) I/; = (/r; +irox; ) (/r; i rox; ) =a t—a— (26)
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for V(x) as in (14). Using the commutativity of the rr; in

this case as well as
ys =g(sin(x; —x, )(',

(35)
[x;,zj] =iB;J 1+l g M;g —i(1 —8;J)lM;J.

kxi
(27) ye=+(x; x—, I'ei(j

we find

[a;,a l = [a;t,a t] =0,

[a;,a t] = 2l—roM; J (for i ej), (28)

and thus

[h;,hj] = —2!co(h;MJ —M~lh;) . (29)

We observe that the commutation relations of the h; are
similar to the ones of z; in (20). Therefore the quantities
I„defi ned now as

l =gh" (30)

(31)

This is the Calogero model of harmonic plus inverse
square potentials, and we have derived its integrals of
motion.

Notice that the constant terms appearing in (18) and
(31) are the negative of the ground-state energy of the
corresponding Hamiltonians, thus shifting the ground-
state energy to zero. In fact we can easily find the
ground-state wave function noticing that the above H's
are positive definite and thus if we can find states 1)rs or
t)rc satisfying

ps=0 or a;yc (32)

these will be the ground state. Taking them further to be
bosonic, they must satisfy

r)i ties -g l cot(x; —x, )
gs j«

(33)

t) Yc = —mx;+g I (34)
Yc j ~i xt XJ'

respectively. By integrating (33) and (34) we easily find

the Sutherland and Calogero ground-state wave functions

can be shown to commute in a way similar to the one for
the I„. In particular, the Hamiltonian H =

2 I~ in the bo-

sonic or fermionic subspace becomes

H= —gp +g +—pro x1 z l(l+ 1) 1

2 I l&J' (x; —xj) 2

In conclusion, we see that the formalism above
identifies a better set of phase space "momentum" vari-
ables, which allow for an eA'ortless and relatively straight-
forward derivation of the integrability of these systems.
It is also remarkable that the above proofs work directly
in the quantum regime (the exchange operators M~~ have
no classical counterpart), thus circumventing the operator
ordering problems encountered when constructing the
quantum integrals of motion starting from the classical
standpoint. It is hoped that this formalism will provide
an easy proof of the quantum integrability of the systems
recently found in Ref. [71, or even that it will lead to as
yet uncovered new integrable systems. We hope to come
back to these issues in a future publication.
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