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Slow Decay of Temporal Correlations in Quantum Systems with Cantor Spectra
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We prove that the temporal autocorrelation function C(t) for quantum systems with Cantor spectra
has an algebraic decay C(t)-t s, where b equals the generalized dimension D2 of the spectral measure
and is bounded by the HausdorA' dimension Do~ 8'. We study various incommensurate systems with

singular continuous and absolutely continuous Cantor spectra and find extremely slow correlation decays
in singular continuous cases (b =0.14 for the critical Harper model and 0 & b ~0.84 for the Fibonacci
chains). In the kicked Harper model we demonstrate that the quantum mechanical decay is unrelated to
the existence of classical chaos.

PACS numbers: 03.65.—w, 05.45.+b, 73.20.Dx

The temporal decay of correlation functions plays an
important role in classical physics, as it can be used in er-
godic theory to define mixing, a somewhat weaker proper-
ty than chaotic behavior. As quantum mechanics pre-
cludes sensitive dependence on initial conditions, the pos-
sibility that quantum systems might exhibit mixing be-
havior through their decay of correlations has attracted
considerable attention in recent years. The situation is
far more complex than in classical physics and some of
the investigations have arrived at controversial con-
clusions [I]. The complication is due to the absence of
one-to-one relations between the nature of the decay and
the spectral type (absolutely continuous, singular con-
tinuous, pure point, or any mixture). Only decays faster
than any power law can be uniquely related to an abso-
lutely continuous spectrum. Slow power-law decays,
however, can be compatible with a singular continuous
spectrum, as well as an absolutely continuous spectrum.
Therefore, in order to relate the decay to the spectral
type, Avron and Simon [2] had to introduce a distinction
between "transient" and "recurrent" absolutely continu-
ous spectra. Many problems, however, still remain to be
solved. In this situation it is useful to investigate the
correlation decay of various systems for which the spec-
tral types are known and to develop a new general con-
cept for a quantitative determination of the correlation
decay.

In this Letter we first analyze the decay of the correla-
tion function C(t) in the unkicked and kicked Harper
model for localized, critical, and extended states, as well
as in the Fibonacci chains. Numerically we find slow
algebraic decays C(t)-t with 0&b~0.84. This is
the first quantitative determination of the correlation de-
cay in these systems and confirms the conjecture of
anomalous transport. For the regime of extended states
of the Harper model the power-law decay has an ex-
ponent 8=0.84+0.01 reflecting a recurrent absolutely
continuous spectrum, whereas the singular continuous
spectrum in the critical case gives rise to an extremely
slow decay with 8 =0.14 ~ 0.01. The singular continuous
spectrum of the Fibonacci chains shows variable ex-
ponents 0 & B(0.84 with b approaching 0.84 as V 0,
where the spectrum becomes absolutely continuous. In
the kicked Harper model, which is classically chaotic, we
demonstrate that the decay of the quantum correlation
function is unaffected and cannot be interpreted as a sig-
nature for the existence of classical chaos. We then show
analytically that for Cantor set spectra (singular continu-
ous or absolutely continuous) the correlation function de-
cays algebraically,

C(t) -t
that 6' is given by the generalized dimension D2 of the
spectral measure
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6'=Dp, (2) f .00

and that the Hausdorff dimension Do gives an upper
bound Do~ 6'. Thus, while there are no one-to-one rela-
tions between spectral types and the decay of correla-
tions, there does exist a relation determining the correla-
tion decay from multifractal properties of the spectrum.
This relation is simple and of general validity for fractal
spectra of all types. In other words, the specific spectral
type is rather irrelevant in the present context, whereas
the multifractal concept is relevant.

Our first example is Harper's equation as a model for
Bloch electrons in a magnetic field B in the framework of
the Peierls substitution [3,4]. In this system we have re-

cently found a new class of level statistics [5], where the
level spacing distribution follows an inverse power law

p(s)-s '~. This behavior is related to an unbounded
diA'usive spread -2Dt of wave packets and persists under
classically chaotic perturbations [6]. The model is de-
fined by a discrete Schrodinger equation

y„y, + y„—~+& cos(2zna pn) y„=—rug„, (3)

where y„ is the wave function at site n. The dimension-
less parameter a=a eB/hc gives the number of flux

quanta per unit cell of area a and determines the incom-
mensurability of the system. It is known that k =2 is a
critical case [7] separating a regime of extended states
(A, & 2) from a regime of localized states (A, ) 2) for irra-
tional v [8]. For k =2 the states are neither localized nor
extended, but are called critical. The spectrum is a Can-
tor set for a dense set of parameter pairs (X,o) [9].

For rational values of o =r/q we use the transfer ma-
trix method [10] to obtain the q eigenenergies and q
eigenfunctions y„k (k =1,2, . . . , q) of the system [11].
In this case the probability to be in the initial state
~p(t =0)& at time t can be written as

which is shown in Fig. 1 for o an approximant of the
golden mean and three different values of k. All numeri-
cal simulations were started with localized initial wave
packets. For k =2 we find an extremely slow decay of the
correlation function following a power law C(t)-t
with 6=0.14+ 0.01. For k & 2 the correlation decays
with 6=0.84~0.01, while the extended eigenstates and
the absolutely continuous spectrum might have suggested
an exponential decay. The slow power-law decay with
8=0.84 thus must be a manifestation of a recurrent abso-
lutely continuous spectrum [2]. The singular continuous

where we used the spectral decomposition P„(t=0)
=gq

akim„,

k. We define a temporal autocorrelation func-
tion C(r) by the smoothened probability to be in the ini-

tial state at time t,
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FIG. 1. Correlation function in the Harper model (solid
lines) for a =1597/2584, an approximant of the golden mean,
displaying power laws C(t) -r with h =0.84+ 0.01, 6
=0.14+ 0.01, and 8=0 for X=1, 2, and 3, respectively. For
the kicked Harper model (dashed lines) with cr the golden
mean, the same asymptotic behavior is obtained for K=6 and
L=3, 6, and 9 corresponding to the extended, critical, and lo-
calized regimes, respectively.

spectrum for k =2, on the other hand, has an even slower
decay (6=0.14). For k) 2 there is no decay, as expect-
ed for localized states.

In order to study the influence of classical chaos on the
decay of C(t) we numerically investigate the kicked
Harper system, which has a classically chaotic phase
space [6,12,13]. It is described by

H =L cos(p) +Kcos(x )6'i (t), (6)

where 8~(t) is a periodic delta function of period one and
p= —i 6 t)/t)x plays the role of a momentum operator
with an eAective 6 =2zo. We have shown that in the
limit L/A, K/I't 0 the unkicked Harper model with
X=2L/K is recovered [6]. The wave packet at integer
time t is obtained conveniently by t iterative applications
of the time evolution operator U for one period,

—i (L/6)cos(p) —i (K/0 )cos(x) (7)

The results for the correlation function Eq. (5) are shown

by the dashed lines in Fig. 1 for parameters in the strong-
ly chaotic regime. The asymptotic behavior of C(t) is the
same as for the integrable Harper model and thus the de-
cay of the quantum correlation function does not reflect
the existence of classical chaos.

As another quasiperiodic system we study the
Fibonacci-chain model, which has attracted much atten-
tion since the discovery of the quasicrystalline phase in

AIMn [14]. Here the potential only takes the two values
+V and —V arranged in a Fibonacci sequence and re-
places the cosine potential in Eq. (3) [7]. The eigenener-
gies can be determined by a very efficient method, using
the trace map [7,15]. The decay of the correlation func-
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e ' 'dp, (rp) =2', (t)p, (t)*, (8)p(I) = „
where p p(t) denotes the Fourier-Stieltjes transform of
pp(ru). Among the generalized dimensions Dv in particu-
lar we need D2, which is defined by the scaling behavior

r ++I/2
y(l) =„dpi'(ro), dpi'(ru')-I ' (I 0). (9)

The function y(l) gives the probability that two eigen-
functions picked (with the according probability) from
the spectral decomposition of

~ p) have an energy
difference less than I [19]. We now show that y(l) is re-
lated to p(t) To this. end we introduce the characteristic
function

(io)

1.0

0.8

0.6

tion also shows power-law behavior and the exponent 6
depends on the parameter V. This dependence is shown
in Fig. 2 where we find values of 8 ranging from 0 to
0.84. Here the spectrum is singular continuous for all
V) 0 and becomes absolutely continuous for V=O [161.

Summarizing the above results we find asymptotic
power-law decays C(t)-t with 6&1 for all three
quasiperiodic systems. This asymptotic behavior calls for
a general explanation. We give an analytic derivation of
the correlation function C(t) for spectra (singular con-
tinuous or absolutely continuous) characterized by gen-
eralized dimensions D~ [17]. First we specify the Hamil-
tonian H through its spectral projections P [18], where
cp E spec(H). The spectral measure pp(co) with respect
to an initial state vector

~ p) is defined by p p(ro)
The probability p(t) =l(p(0)lp(t)&l gen-

erally can be written as [2]

with A = [—I/2, l/2] and rewrite Eq. (9) as

t/2

p(r) dr,2 "+" sin(lr/2)
g3 40 (i2)

where we made use of Eq. (8). We thus have a simple re-
lation between the temporal probability p(t) and the
spectral probability y(1) [20]. Assuming a pure power-
law behavior either for y(l) or for C(t) we derive from

Eq. (12) the relation

which holds for 0 & a & I and where a =D2 according to
Eq. (9) [21]. A similar relation with C(r) replaced by
p(t) (i.e., without smoothing) does not hold in general,
e.g. , for the standard middle third Cantor set C(t) decays
like C(t) -t ' whereas p(t) does not decay to zero.

This main result connects the algebraic decay of the
correlation function with the multifractal structure of the
spectral measure pp(rp). The value of the exponent, i.e.,

the generalized dimension D2, can only be computed if
the spectrum, the eigenfunctions, and p(t =0) are known.
If only the spectrum is known, it is possible to given an

upper bound for D2 as follows. On the one hand, from

f dpi'(i) =1 it follows that D2(pp(ru)) ~Dp(pp(ru)),
where Dp(pp(ru)) is the Hausdorff dimension of the spec-
tral measure [17]. On the other hand, Dp(p&(ro)) is

the fractal dimension of the subset of spec(H) that
is excited by the initial wave packet, whereby
Dp(pp(rp)) ~ Dp(spec(H)). Therefore the upper bound

Dp(spec(H)) gives a lower bound for the decay of the
correlation function [22]

Using the convolution theorem we write the second in-

tegral as the inverse Fourier transform of the product of
the Fourier transforms of pp(ro) and g~ (cp), yielding

1
+" +" sin(lr/2)

y(l) =— dp, (rp) e' 'P, (r) dr
4 —oo 4 —oo

i/2
2 "+", sin (Ir /2)

P p(r)*P,(r) dr
4 —oo

0.4 C( ) D0(sPec(H)) ( ) (14)

0.2

0.0
0

where c is an appropriate constant.
To illustrate these analytical results we have deter-

mined the dimension D2 for the Harper model and the Fi-
bonacci model by dividing the energy range into boxes B;
of length I and computing the function y(l) as [19]

FIG. 2. Power-Iaw exponents b (triangles) of the correlation
function decay for an initially localized wave packet and various
potential strengths V in the Fibonacci model. Theory predicts
the equality of b and the generalized dimension D& (squares)
according to Eq. (I 3) and gives an upper bound Do~ b [see Eq.
(14)l, where Dp (diamonds) is the global Hausdorff dimension.

It G BI

For the Harper model this function is shown in Fig. 3 for
three different values of X corresponding to those of Fig.
1. The values of D2 agree with those of 8' in Fig. 1. In
the same way we have computed the dimension D2 for the
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FIG. 3. Probability y(l) vs i [Eq. (15)] for Harper's equa-
tion, from which we deduce Dq=0.83+ 0.01, D2=0. 14+ 0.01,
and D2=0 for X=1, 2, and 3, respectively, The values of D2
equal those of b in Fig. 1 within the numerical errors.
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