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Quantum Dot Arrays: A New Picture of the Quantum Hall Meet in Two-Dimensional Crystals
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We investigate the edge-state spectra of two-dimensional quantum dot arrays (QDA's) in transverse
magnetic fields, and the manifestation of the edge states in lateral quantum transport. We show the
edge states to be superpositions of normal and counterrotating currents. A Biittiker-Landauer transport
analysis of this physical picture predicts positive and negative Hall conductances, quantized in integer
and fractional multiples of e"'/h, for QDA's connected to ideal reservoirs. The predicted fractions diller
in value and origin from the usual fractional quantum Hall etTect.

PACS numbers: 73.20.Dx, 72.20.My

The study of electronic transport in low-dimensional

systems has produced many important and fascinating re-
sults, both theoretically and experimentally. Of particu-
lar interest is the integer quantum Hall effect (IQHE)
discovered by von Klitzing, Dorda, and Pepper [1], and
the fractional quantum Hall effect (FQHE), first ob-
served by Tsui, Stormer, and Gossard [2]. The IQHE
can be understood in terms of a one-particle picture for
2D electrons in transverse magnetic fields. The Hall con-
ductance is quantized in integer multiples of e-'/h when

the Fermi energy lies within a band of localized states be-
tween Landau levels [3-5]. An alternative point of view,

proposed by Streda, Kucera, and MacDonald [6], by Jain
and Kivelson [7], and by Buttiker [8], is based on con-
siderations of transport by Halperin" s magnetic edge
states [4] and the Landauer [9] picture of one-dimen-
sional conduction. The FQHE, on the other hand, is due
to electron-electron interactions. The explanation pro-
posed by Laughlin [10] has a ground state which, at
specific fractional Landau-level filling factors, becomes
an incompressible fluid with fractionally charged excita-
tions. Recent work by Beenakker [11] and by Johnson
and MacDonald [12] has also provided a possible edge-
state picture of the FQHE.

As was demonstrated by Thouless er al. [13] and
clarified by Aoki [14], by Rammal et al. [IS], and by
MacDonald [16], the quantum Hall effect should also
occur in two-dimensional electron systems in the presence
of a periodic potential. Such systems were shown by Az-
bel [17],by Wannier [18], and by Hofstadter [19] to ex-
hibit a complex fractal one-electron spectrum, the Hof-
stadter "butterfly. " Their Hall conductance has been
predicted to be quantized in positive or negative integer
multiples of e /h when the Fermi level lies in a spectral
gap [13-16]. Possible experimental realizations of such
systems are two-dimensional electron gases with a weak
periodic potential modulation, which have recently been
reported by Gerhardts, Weiss, and Wulf [20] to exhibit
evidence of the Hofstadter butterfly spectrum, and
periodic arrays of quantum dots. Quantum dots are small
(—1000 A), few-electron systems formed by lateral
confinement of 2D electrons [21-23].

The purpose of this paper is to present a new approach
to understanding the quantum Hall eAect in periodic ar-
rays of quantum dots in transverse magnetic fields. We
will show that, in the context of a one-electron model, the
lateral transport problem in these structures is extremely
complex: The quantum dot array can support edge
currents which "counterrotate, " i.e., they exhibit rotation
that is opposite to that normally expected from a Lorentz
force argument. In some situations, diAerent numbers ol

both normal and counterrotating edge states exist at the
same time. %'e will show that for particular numbers of

normal and counterrotating eigenmodes, it is possible to
have integer, negative, and even f'ractional Hall conduc-
tance, i.e. , Gii a fraction of e /h, in these structures.
This represents the first instance of fractional Hall con-
ductance in a one-electron model, with a diA'erent physi-
cal origin (and different fractions) from the FQHE in 2D
electron gases.

To understand the nature of the transport problem in

the presence of the array, we consider the following pic-
ture. We connect reservoirs to each side of the array as
shown schematically in Fig. 1 ~ In this case, one may cal-
culate the Hall conductance GH from the Biittiker [24]
equations l, =(K,p, —gi Ti pi)e/h, where I, is the net

current injected at reservoir j, A; is the number of chan-
nels injected by reservoir j at the Fermi energy, pj is the
chemical potential of reservoir j, and T,I, is the transmis-
sion probability from reservoir k to reservoir j. Now we

assume that the reservoirs are ideal, that is, they are per-
fectly emitting and absorbing. Therefore, edge modes in-

jected from reservoir l are completely absorbed into
reservoirs and 4, while none are transmitted to 3, ;lnd so
on for each reservoir. If we denote the number of inject-
ed modes circulating in a clockwise sense hy JV, and those
circulating counterclockwise by M (see Fig. 1), we have

the following simplifications: T.i
= JV, T4] =M, ;lnd

k] =%+M. Applying these relationships in the Biittiker
equations, with I i

= —Iq =I, 1.=I4 =0, we find for the
Hall conductance

e- 1V +M
h IV —M
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F16. l. Schematic of the quantum dot array attached to
ideal reservoirs. The reservoirs are labeled R l -R4. N normal
modes are populated by reservoir l and absorbed by reservoir 2,
and M counterrotating modes are populated by R l and ab-
sorbed at R4.

We stress that Eq. (I) applies in the ballistic regime —/V

and M are independent channels. If the rotating and
counterrotating channels are allowed to mix and equili-
brate, then Eq. (I) reduces [25] to GH=e /h(/V —M)
(algebraically summing the edge states), which agrees
with the results of Thouless et al. and MacDonald.

From Eq. (I) it follows that a variety of situations are
possible: GH can be positive or negative (N (M), and
integer or fractional multiples of e /h. The lowest-order
fraction is given by 1V =4, M= 1, i.e. , the presence of four
clockwise states and one counterclockwise state gives a
Hall conductance of GH=(e /h) '3'. With this in mind,

we now examine the eigenspectrum of the quantum dot
array to find the types of solutions (combinations of
modes) that should occur in the physical transport prob-
lem.

We adopt a model based upon a 2D array of quantum
dots connected by narrow constrictions. The geometry of
a portion of the array is shown in Fig. 2(a). If the ap-
plied magnetic field peints along +z, then the vector
potential may be written in the Landau gauge A
= ( —By,0,0). In this gauge, the Hamiltonian of the sys-
tem is periodic in the x direction, and the eigenstates of
the array may be constructed of states in columns of dots
via Bloch's theorem. We assume that the individual
quantum dots have azimuthal symmetry. The one-
electron eigenstates of the individual dots are then
characterized by radial and azimuthal quantum numbers
n and /, respectively, where n is an integer and the
symmetry-breaking eAect of the constrictions makes I a
continuous variable for open systems [26]. Explicitly, in

an arbitrary dot,

( ) ie1rBtryo ) ro+.r& )Ih g ( )—.„r—ro e

where r p
= (xp,yp) is the location of the center of the dot

FIG. 2. (a) Part of the quantum dot array under considera-
tion. The integer q labels the columns of the array, awhile j la-
bels the dot within a column. The direction of normal electron
rotation is given for a magnetic field along +z. Illustrations of
the simplest (b) normal and (c) counterrotating edge current
states of the array [only the dots bordering the edge of the ar-
ray are shown in (b) and (c)].

and p is the azimuthal angle with respect to the center of
the dot.

In what follows, we assume that the external magnetic
field is high enough that the individual dots are in the
edge-state regime, and therefore only the lowest radial
mode need be considered. In this regime, mode mixing
occurs only near the constrictions, where an electron may
either scatter into modes in the adjacent dot or remain in

the same mode and propagate to the next constriction. In

propagating from constriction to constriction, the one-
electron wave functions acquire a phase shift which may
be found from the dot eigenstates (2). We calculate the
eigenstates of the array by exploiting the unitarity of the
scattering matrices that relate the current amplitudes
entering and leaving the vicinity of the constrictions join-
ing different quantum dots [26,27]. For scattering at any
constriction in dot j, this yields

J (q) =P U J'(q') '

Ut fI

(3)

Here J~ is the current amplitude out of the constriction
in dot j, Jj is the amplitude incident on the constriction
in dot j', U is a unitary scattering matrix, and g is the
Bloch phase. The sum is over the dot numbers bordering
the constriction, and each dot number has a correspond-
ing column number q [cf. Fig. 2(a)]. We find the eigen-
modes of the system of equations (3) with real ( for an
infinite strip of dots running parallel to the x axis as
shown in Fig. 2(a). The propagating modes (with real ()
are the edge states of the quantum dot array. These
modes are localized at or near the array edge, and decay
rapidly into the interior. At particular values of field and
angular momentum I there may be several eigensolutions,
and the net current amplitude will be a superposition of
the individual current amplitudes corresponding to the
different values of g.

Now we turn to our results. As mentioned previously,
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FIG. 3. The eigenspectra of a quantum dot strip with 90%
transmission at the constrictions. Here X = —I, the dot angular
momentum; P Bd /@rj. The regions are marked according to
the total number of propagating edge states as shown, and the
labels indicate the number of normal and counterrotating states
(1V,M). The inset region "&&" is enlarged, illustrating the com-
plex region between 0, 1 and 1,0 in the spectrum, where there is
competition between numbers of rotating and counterrotating
states. The labels are representative, and do not constitute all
of the distinct regions present in the inset.

we consider a situation in which only the lowest radial
mode is occupied per dot. In this case, the angular
momentum is roughly a label for the electron number per
dot; a change in I by 1 at the Fermi energy is roughly a
change in electron number by I per dot (in the spin-

polarized regime). At fixed 8, the eigenmodes of the sys-

tem are periodic in / (modulo I). Also, at fixed f', the
eigenmodes of the array are periodic in magnetic field 8
with period 58 =@0/d, where @0 is the flux quantum
and d is the lattice spacing. Therefore, we work in the
convenient variables k= —I and P=8/AB, both modulo
1. For the matrix U we choose the form U~~

= [8& ~ (I —p ) '~ + (I —8&' ~)p] exp(i 0& ), where 0&~ is the

phase shift for scattering from dot j' to dot j, and p is

the probability to scatter into an adjacent dot. In what
follows, we choose p =0.9, 8~~ =n/2, and O~J=O, con-
sistent with unitarity.

In Fig. 3, we plot the eigenspectra k vs P for a third of
a period in each. We choose this region because (I ) the
full period in ) and P is highly symmetric and (2) the re-

gions most important to the transport problem (the larg-
est number of rotating states, counterrotating states, and
mixtures) occur for X (0.3 and P (0.3, and in the sym-
metric region )f„p)0.7. The unshaded region marked
0,0, where the notation is given by N, M (number of nor-
mal and counterrotating states, respectively), is an insu-

lating gap, that is, a region where no propagating solu-
tions exist [27]. The rest of Fig. 3 is divided into regions
characterized by the number of distinct edge states (with
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I IG. 4. Hall conductance vs P (magnetic field) f'or fixed
& =0.206. See the inset region of Fig. 3. Marked are the in-

teger and fractional plateaus at G~ =3 and GH = —", ,

respectively —these correspond to the regions 3,0 and 4, 1 in the
inset of Fig. 3. Also note the negative plateaus at CiIg = ——,

'
and G~ = —10.

differing real g); the light regions have one state, the
darker regions have two states, and so on up to five states.
Two large one-state regions are marked 1,0. These con-
tain the principal normal edge states, where the current
amplitude is predominantly localized at the outermost
boundary of the edge dots [see Fig. 2(b)]. Also of in-

terest is the large central one-state region denoted 0, 1.
This is a region of principal counterrotating edges
states —localized predominantly at the inside edge of the
edge dots, as in Fig. 2(c). Note that for clockwise rota-
tion within an individual dot, a current circulating around
the array on only the inside portion of the edge dots
would have a counterclockwise sense.

Interesting patterns are apparent in Fig. 3. Notice that
as one traverses the spectrum from right to left beginning
at the principal 1,0 region in the lower right portion of
the figure, the number of normal edge states present in-

creases progressively as P is decreased, as long is ) is not
too large. In contrast, the eAect of mixing normal and
counterrotating states causes the progression downward
in /I from the principal counterrotating region 0, 1 to be
irregular; i.e. , the sequence from one counterrotating
state to two, etc. , is interrupted by intermediate regions
containing both normal and counterrotating modes, The
"buAer" region between the 0, 1 region and the 1,0 region
in the upper left portion of Fig. 3 is a 1, 1 region, as one
might expect. The inset corresponds to the region
marked "&," and is illustrative of the kind of complexity
which exists in the region intermediate between the prin-
cipal normal and principal counterrotating zones; we note
that the complexity here has a diff'erent character from
the classic Hofstadter spectrum. The states listed explic-
itly in the inset with & 5 states are only representative,
since the character of the eigenstates outside of the 3,0
and 4, 1 regions changes on a finer scale than what is

shown. In general, note that the region above and to the
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left of the 3,0 zone in the inset is dominated by counter-
rotating states, while the region below the 4, 1 zone is

dominated by normal states.
To illustrate the effect of the eigenspectra of the array

on transport, Fig. 4 is a plot of Hall conductance [from
Eq. (2)] as a function of P for X=0.206—this corre-
sponds to the region of the inset of Fig. 3. We note the
presence of an integer plateau at GH =3, and a fractional
plateau at GH= '3' (the lowest-order fraction), corre-
sponding to the 3,0 and the 4, 1 regions of Fig. 3, respec-
tively. In addition, note the negative plateaus in the
lower left, corresponding to 2, 5 and 2,4 regions, as indi-

cated in the figure.
In conclusion, we have presented an edge-current

analysis of the Hall effect in quantum dot arrays that
predicts integer, negative, and also novel fractional quan-
tized Hall conductances in a one-electron picture. We
have demonstrated that a plausible model of the quantum
dot arrays exhibits a rich spectrum of coexisting normal
and counterrotating modes, including states that support
the predicted fractional Hall conductances.

We wish to thank A. MacDonald for helpful discus-
sions. This work was supported by the NSERC of Cana-
da and by the CSS at SFU.
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