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Critical Exponents for the Irreversible Surface Reaction A +B = AB
with B Desorption on Homogeneous and Fractal Media
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A model for the surface reaction A+8- A8 with 8 desorption exhibits a continuous irreversible
phase transition from an A-poisoned state to a reactive regime. At criticality, an empty patch embedded
in the poisoned state spreads on the sample following a random-walk diA'usion behavior. So, a relation-
ship between dynamic exponents of the reaction process, the random-walk exponent, and the fractal di-

mension of the substrate is conjectured and tested.

PACS numbers: 68.35.Rh, 82.20.—w, 82.65.Jv
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The kinetics of recombination processes has been inten-
sively studied, both theoretically and experimentally
([1-12] and references therein). Within this context ir-
reversible phase transitions (IPTs) in the monomer-
monomer (MM) [2,6-8], dimer-monomer [2,5,9,10], and
dimer-dimer [11] surface reaction processes have attract-
ed considerable attention in recent years (for a brief re-
view see Ref. [12]). Furthermore, there are other none-
quilibrium models, such as the contact process [13],
Schlogl's first model [14], directed percolation [15,16],
and Reggeon field theory (RFT) [17], which also exhibit
IPTs from a configuration from which the system cannot
escape, namely, the adsorbing state, to an active state.
The latter models belong to the same universality class
and it has been conjectured [18,19] that all one-
component models with a single absorbing state would

belong to the universality class of the RFT. Grinstein,
Lai, and Browne [9] have recently argued that the
second-order IPT of the dimer-monomer surface reaction
process also belongs to the RFT universality class. Their
arguments can be generalized to systems with arbitrary
numbers of chemical components; that is, continuous
transitions into an absorbing state under generic condi-
tions should belong to the RFT universality class [9].
Critical exponents characteristic of the second-order IPT
of the dimer-monomer reaction [10] are in excellent
agreement with values obtained for directed percolation
in 2+1 dimensions [16],confirming, at least for this reac-
tion system, the conjecture of Grinstein, Lai, and Browne
[9]. Furthermore, series expansion and simulation results
reported by Dickman [20] indicate that various one-
dimensional nonequilibrium lattice models in which parti-
cles are produced autocatalytically, and annihilated spon-
taneously, also belong to the RFT universality class.

In this work the time-dependent critical behavior of the
MM surface reaction scheme, with desorption of one
reactant, is studied. The MM surface reaction process is
based upon the Langmuir-Hinshelwood mechanism
[2,6-S]:

A(g)+ —A(a),
8(g)+ *—8(a),
A (a) +8(a) AB(g) +2*,

where (a) and (g) refer to the adsorbed and the gas
phase, respectively, while * denotes an empty surface site.
Let ptt be the mole fraction of 8 species in the gas phase.
Then, a monomer striking the surface could be a B with

probability ptt or an A with probability 1
—ptt. The mod-

el is simulated using the Monte Carlo technique employ-

ing three different substrata: one- (1D) and two- (2D)
ditnensional lattices, and incipient percolation clusters

(IPCs) in two dimensions [21]. In all cases periodic
boundary conditions are assumed. The simulation algo-
rithm is the following: (i) A surface site is selected at
random. (ii) Suppose that the site is empty. One at-

tempts to adsorb A or 8 species using the striking proba-
bility already mentioned above. After an adsorption
event all nearest-neighbor (nn) sites have to be checked
in random order for the presence of adsorbed particles. If
A and 8 are found occupying nn sites an AB species is

desorbed leaving two sites of the surface free. Now sup-

pose that the selected site is already occupied. If it is oc-

cupied by an 8 species the trial ends; otherwise, if it is oc-
cupied by a 8 species this particle is desorbed with proba-
bility 1, leaving an empty site on the surface. The Monte
Carlo time unit (t) is defined such as each site of the sur-

face is visited once, on the average. For more details see

also [2,6-8].
Neglecting 8 desorption, the MM process exhibits an

IPT at the critical point given by p,q
=

& . That is for

pit (p, tt (ptt )p,tt) the surface becomes poisoned by A

(8) species [2,6-8].
Figure 1 shows the phase diagram of the MM process

simulated on IPCs and obtained assuming B desorption.
The latter assumption inhibits the formation of a 8-
poisoned state and consequently one observes a continu-
ous second-order IPT from the 3-poisoned state for

pq ~ p,q to a reactive state with AB production for

pg & p,~. The IPTs occur at the critical points given by

p,g =—0.5562+ 0.0003, p,g =-0.5099 ~ 0.0003, and p,g

=0.6150~0.0003, for IPCs, 20, and 1D substrata, re-

spectively.
As has been demonstrated [5,10,16], a fruitful way to

test the universality class is to evaluate exponents related
to the time-dependent critical behavior of the process. In

this case we begin with the 1D and 2D lattices completely
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Furthermore, we conjecture

Nd(t) ~t".

0.7S -—
The fractal dimension dI of the part of the sample

visited during the reaction process at fixed time is defined
as

0.50--
w, ~~I,d

and using Eqs. (4) and (5) one has

dr=x/2z (DI,

(6)

(7)

0.25

O.M !nn
S

0.40 0.60 0.80

B
FIG. 1. Plot of the coverages with A(a) and B(a) species and

the rate of AB production, 8~ (CI), He (0), and RAg (&), re-

spectively, versus pz for the MM surface reaction with 8
desorption on IPCs.

covered with A(a) species except for a nearest-neighbor
pair of empty sites at the center of the sample [5,10]. In
the case of IPCs the simulations start similarly, but due
to the disordered structure of the substratum a group of
N, empty sites, with 2 (N, (9, are selected close to the
center of the cluster. The resulting average number of
empty sites is (N, ) =5.07 ~ 1.69. The measured quanti-
ties are as follows: (i) the survival probability P(t), that
is, the probability that the sample was not poisoned with

A(a) species after t time steps, (ii) the average number of
empty sites N(t), (iii) the average mean-square distance
R (t) over which the empty sites have spread, and (iv)
the number of different sites Nd(t) of the sample visited
during the reaction process. N(t) is averaged over all
samples, including those which have already been
poisoned, while both R (t) and Nd(t) are averaged over
the runs in which the sample is not poisoned at time t
[10,16]. Lattice sizes are selected large enough to avoid

empty sites arriving at the boundary. Averages are taken
over 4.5&10 (4.5x10 ) for IPCs (homogeneous) sam-
ples and runs are performed up to t =10 in all cases. In
spite of the fact that fluctuations for IPCs should be
larger, results for these surfaces have poorer statistics be-
cause the generation of diNerent IPCs for each case is
quite time consuming. At the critical point it is expected
that the following scaling laws should hold [10,12,16,17]:

P(t) cx: t (2)

where DI is the fractal dimension of the whole sample.
Notice that both Eqs. (6) and (7) are valid in the limit of
very low 8(a) coverage, because sites occupied by 8(a)
species are considered in order to evaluate Nd but not to
calculate R .

Results for the quantities P(t), N(t), R (t), and Nd(t)
obtained for both 2D lattices and IPCs are shown in Figs.
2(a)-2(d), respectively. For ptt slightly smaller (greater)
than p, tt the local slope of N(t), for t 10, veers down-

wards (upwards), allowing a precise determination of the

critical point [10,16]. The best fits of the data shown in

Fig. 2 allow us to evaluate the critical exponents listed in

Table I, which also includes results obtained for 1D sam-

ples. Results for the dimer-monomer surface reaction

process and directed percolation are also listed in Table I

for the sake of comparison. From these results it follows

immediately that the continuous IPT of the MM surface

reaction process with 8 desorption does not belong to the

RFT universality class. The exponents obtained are also

different from those reported for the first-order IPT of
the dimer-monomer surface reaction process [5,12].

Using the exponents listed in Table I and Eq. (7) one
obtains for the fractal substratum dI=-1.93 ~ 0.02, in ex-
cellent agreement with the fractal dimension of IPCs
given by Dr =91/48 =-1.90 [21]. Also, for the homogene-
ous substrata one obtains dI =- 2.08 ~ 0.02 and
=1.06~0.02, which again agree with DI=2 and DI
=I, respectively. The slight overestimation of dI could
be due to the fact that Eq. (7) only holds in the limit of
very low 8(a) coverage, as discussed above. These results
indicate that the reaction spreads from the center over
the neighboring regions of the sample, performing a com-
pact visitation, that is, exploring all the accessible space.
In order to gain insight into the visitation process, let us
evaluate the average number of different sites visited per
site unity (nd), given with good approximation by

I

nd=Nd/N a: t" (8)
where the time dependence is introduced via Eqs. (3) and
(6) and d,'=x —rt. Using the values listed in Table I our
estimate becomes

and

N(t) ~t",

R'(t) ~t'.

(3)

(4)

d,'=0.679 (IPCs), d,' =0.98 (2D), d,' =0.48 (ID) .

These figures have to be compared with the random-walk
exponent (d, ) [22]; i.e., the number of different sites

657



VOLUME 69, NUMBER 4 PH YSICAL REVIEW LETTERS 27 JULY 1992

0.00 2.40

—1.50 -—
(a)

$.80

-3.00-- 1.20

-4.50
0.00 2.00 4.00 ~ ~ 6.00

0.60
0.00 2.00 4.00 I -, 6.00

9.00

7.00

6.00
(d)

5.00

3,00
3.00

1.00
0.00 2.00 4.00 600

0.00
0.00

I

2.00 4.00
j
I

6.00

FIG. 2. Plots of (a) In[P(t)], (b) In[N(t)], (c) In[R2(t)], and (d) In[Nd(t)] vs In[t]. Results correspond to simulations on IPCs
(A) at p,s =0.5562 and 2D media (CI) at p,s =0.5099. Straight lines are least-squares fits with correlation coefficients better than
0.999.

visited by a single random walk (S) at time t behaves as
ger g

'.d,

d, =
3 (IPCs, [22]), d, =1.0 (2D), d, = Y' (ID).

Summing up, evidence is given to prove that the IPT of
the MM reaction with B desorption does not belong to
the RFT universality class, in contrast to the conjecture
that continuous transitions into an adsorbing state of any
system under generic conditions would belong to that
universality class. Furthermore, in view of the obtained
results, replacing df by Df in Eq (7) and d.,'by d, in Eq.
(8), the following conjecture, which relates the dynamic

exponents of the MM reaction process, the random-walk
exponent, and the fractal dimension of the substrate, may
be suggested:

zDI =2(d, +ri) . (9)

This conjecture holds for the studied MM reaction pro-
cess in both fractal and homogeneous media. The empty
patch of the surface embedded in the poisoned state
spreads via a random-walk diffusion process with com-
pact visitation. From Eq. (9) also follows that the dy-
namic exponents g and z are not independent.
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TABLE I. List of critical exponents b, rt, z, and x, defined according to Eqs. (2)-(5). DM
denotes dimer-monomer reaction process, DP denotes directed percolation in 2+ 1 and 1+ 1 di-

mensions, and PW denotes present work.

Model

MM on IPCs
MM on 2D
MM on 1D
DM on 2D
DP in (2+1)D
DP in (1+ l)D

0.449+ 0.009
0.632+ 0.009
0.223 ~ 0.008
0.452 +' 0.008
0.460 ~0.006
0.162 +' 0.004

0.127+ 0.011
0.153 +' 0.010
0.130~ 0.010
0.224+ 0.010
0.214 ~ 0.008
0.317w 0.002

0.843 w 0.008
1.091 w 0.005
1.211 + 0.004
1.139+0.005
1.134+ 0.004
1.272 ~ 0.007

0.806 w 0.007
1.133 w 0.006
0.503 ~ 0.005

Ref.

PW
PW
PW
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na). The Alexander von Humboldt Foundation (Ger-
many) and Fundacion Antorchas (Argentina) are greatly
acknowledged for the provision of valuable equipment.
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