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Nonlinear Optical Response of Conjugated Polymers: Electron-Hole Anharmonic-Oscillator Picture
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The nonlinear optical response of conjugated polymers is calculated using an electron-hole (exciton)

representation. Equations of motion are derived which map the calculation of g~ onto the dynamics of
N(2% —1) nonlocal coupled anharmooic oscillators representing electrons aud holes, N being the num-

ber of double bonds. The scaling of the static g with size and Coulomb interactions is shown to be

directly correlated with the exciton coherence size associated with the relative electron-hole motion.

PACS numbers: 36.20.Kd, 42.65.—k, 71.35.+z, 78.65.Hc

Conjugated polymers with extended (delocalized) elec-
tronic states constitute an important class of materials
with interesting nonlinear optical properties [1-7]. The
magnitude of the off-resonant nonlinear response and its
scaling with size have received considerable attention
[2-51. A power scaling law on molecular size g( )-N
has been established [3], N being the number of double
bonds. Estimates of the scaling exponent b vary from 6
to 3.5 for the size range N=2-12. Values of 5.257
[4(a)] and 4.32 [4(b)] were reported for the Hiickel (sin-
gle electron) model. Similar values were found when

Coulomb interactions are incorporated, b =4.6 [5(a)1
and b 5.27 [5(b)]. The scaling is expected to saturate
for large N where the thermodynamic limit implies that
b 1. Understanding the origin of the nonlinear response
and the factors determining the magnitude and the
response time scale of large polyenes, and their scaling
and saturation with size, constitutes an important experi-
mental and theoretical challenge. A major obstacle in
the theoretical modeling of these phenomena is the lack
of an efficient method for computing the nonlinear
response, particularly for large polyenes, where the con-
ventional sum over molecular eigenstates expressions be-
comes prohibitively tedious.

In this Letter we develop an anharmonic-oscillator pic-
ture for the nonlinear optical response of conjugated poly-
mers using equations of motion for two-particle (elec-
tron-hole) variables. The method allows a very efficient
calculation of the nonlinear response over a broad range
of sizes and Coulomb interactions and resolves the ambi-
guity regarding the scaling exponent. The most notable
result of the present study is the clear identification of the
elementary excitations as charge-transfer excitons which

are intermediate between the molecular (Frenkel) and

the semiconductor (Wannier) excitons. The coherence
size determining g(3) is shown to be related to the exciton
size associated with the relative electron-hole motion.

We start with the Pariser-Parr-Pople (PPP) Hamil-

tonian which consists of the tight-binding single-electron
(Su-Schrieffer-Heeger or Hiickel) Hamiltonian with the
addition of Coulomb interactions [1]. The Hiickel model

represents a linear chain with a single 2p, orbital per site
and with alternating exchange couplings Pi =P(1 —b),
P2 P(1+8) and N repeat units. The Coulomb interac-
tion between two electrons located at positions x and x' is

modeled using the Ohno formula, Z(x —x') =U[1+[(x
—x')/q U] j '/, q being the electron charge and U the
on-site Hubbard interaction energy. The eigenvalues

Ho@ E4 of the Huckel model for a polyene with N
double bonds may be calculated using periodic boundary
conditions @„k(N+1)=@„k(1). The N lower (higher)
eigenstates @„k (@,k) constitute the valence (conduction)
band, with energies a„k (e,k) Using .these band func-
tions, we construct a new basis set of 1/Vannier functions,

8;,„(x) (I/JN )eke' "@„k(x). The Wannier functions
at different sites form an orthonormal basis of localized
electronic states, where W„„ is localized on the nth dou-

ble bond. We next introduce creation and annihilation

operators corresponding to the Wannier basis. c„~ creates
an electron in the W, „(x) state, and d„t creates a hole
(removes an electron) in the 8'„„(x) state. The corre-
sponding annihilation operators are c„and d„. These
operators satisfy the Fermi commutation rules, [c„,ct]
~b'„~ —2c~tc„, [d„,d~t] ~b„~—2d~td„.

The PPP Hamiltonian, recast using the electron-hole
representation, is then given by

H=g[ctcrvto„' dtd„to„"~]+—+[2 Vi(nm)(ctc~tc c„+dtdtd„d 2cstc„d~td )—+V2(nm)c~tc„dtd„] —P.E(t). (1)

Here V i(nm) is the Coulomb and V2(nm) is the ex-
change interaction between two charges in two Wannier
states at the n and m double bonds. The PE(t) term—
denotes the interaction between the molecule and the
external electric field E(t), where the polarization opera-
tor P is given by Eq. (3).

The electron and the hole pair created upon optical ex-
citation undergo two types of motion, related to their
translational motion along the molecular chain and the

N ikr-Ysk= ~, e dr +s/2Cr —s/2 ~

N r i
(2)

Here r is the translational coordinate and s is the relative
motion. We shall treat the translational motion in

relative motion of the pair. The separate treatment of
these motions is best accomplished by introducing the fol-
lowing binary variables:
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momentum (k) space. We similarly introduce electron
(hole) coherence variables C, k (D, k) by replacing
dr+s/2&r —s/2 in Eq (2) by &r+s/2~r —s/2 (dr+s/2dr —s/2) ~

Using these binary variables, the polarization operator is
given by

X [Ps (Ys,k + Ysk),+ /i s,k (Csk+, Dsk), ],
s, k

(3)

where p, (p,' k) represents the interband (intraband)
transition dipoles. All quantities appearing in the Hamil-
tonian can be expressed in terms of the four basic param-
eters of the PPP Hamiltonian: P, 6, q, U. Using the
Heisenberg equation A =(i/h)[H, A] together with the
Hamiltonian [Eq. (1)], we derived equations of motion
for the dynamical variables 2, k=Y, k, C, k, and D, k.
The resulting equations have the form A, k =i
x 0,",, (k)A, ,k+FNL. The linear part 0,",, (k) defines a
set of coupled nonlocal harmonic oscillators. %e have
N oscillators representing the electron-hole pair (Y,,k),
and N (N —1 )/2 electron-coherence (C, k ) and hole-

coherence (D, k) oscillators. The nonlinear (anharmon-
ic) part F1vL contains terms of the form E(r)As k and

C, kY, k', D, kY, k', C, kC, k, D, kD, k'. Since FNL con-
tains new higher-order dynamical variables, the equations
of motion are not closed once expectation values are tak-
en. In order to close the hierarchy we first neglected the

C, kC, k, D, kD, k terms which are mainly relevant for
nonlinearities higher than g~ . We further invoked

the factorizations (C; k Y, k) =(C, k)(Y, k, ), (D,, k Y, k)
(D;k)(Y, k). With these factorizations we keep only

the minimum set of relevant variables (Y, k), (C, k), and

(D, ,k) necessary for calculating the polarization. The re-

sulting equations thus map the calculation onto the dy-

namics of N(2N 1) coupled —anharmonic oscillators.
Anharmonic-oscillator modeling of optical nonlinearities
has been suggested as a qualitative model since the early

days of nonlinear optics, and the picture has been firmly

established recently for Frenkel excitons in molecular
nanostructures with localized electronic states [8]. The
present calculation extends these ideas to conjugated po-

lyenes. Solving these equations perturbatively in the ra-

diation field results in the optical susceptibilities. We
have derived a closed-form expression for g which de-

pends on three Green functions [ft,",(k) —ro8, , ] ' rep-

resenting the electron-hole, electron coherence, and hole

coherence, respectively. Since it contains summations
over oscillators, it is much more compact than the con-
ventional expressions based on multiple summations over
molecular eigenstates, and allows us to explore in depth
the size scaling and saturation of the nonlinear response.
Interference effects resulting in the cancellation of large
terms [5] are naturally built into this picture and the can-
cellations are made prior to the calculation [8].

In the following we discuss the static (o(f resonance)
response g (0)—=g (0;0,0,0) for polyacetylenes [ll us-

ing P = —2.40 eV and b =0.07. In Fig. 1(a), we display
the scaling of the third-order static susceptibility with

bQ0 2
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FIG. l. (a) Variation of the static g per double bond with

polyene size for different values of the Hubbard interaction U.

From top to bottom, U 0, 1, 1.5, 2, 3, 6, 9, 12. (b) The scaling

exponent b (b—=dln[zi' (0)]/din(N)) for the various curves in

(a). The value of N where b 1 provides an unambiguous

definition of the nonlinear coherence size 1V, associated with
(3)

molecular size for the size range of N =2-160 for dif-
ferent values of the Hubbard interaction U. In Fig. 1(b),
we show the scaling exponent b which is related to the
slopes of the curves in Fig. 1(a) (b =—d ln [g (0)]/
1ln(N) ). The figure shows some remarkable trends. We
notice a sharp highly nonlinear scaling with size for small
sizes, which becomes more gradual for large sizes. For
the Huckel model (U=O) the exponent b reaches a max-
imum of b =6.7 at W 7 and then drops to a value of 4
for 1V—5Q. The "thermodynamic limit" should imply a
saturation of these curves and b= 1 [g( )(0)/N indepen-
dent on N for large N]. We find that g

1 for the Huckel
model does not saturate in the size range studied. This is

at variance with earlier calculations which were based on

incorporating only single-particle excitations or part of
the two-particle excitations, and showed a saturation at
N =40 [4(b),4(c)]. This behavior can be rationalized as
follows: As shown by studies of Frenkel excitons [8], the
translational motion of the pair is expected to yield a
scaling exponent of b=2, at most. The sharp nonlinear

scaling of g must therefore be attributed to the forma-
tion of excitons and the effect of restriction on the rela-
tive electron-hole motion (quantum size eff'ects). That
motion does not couple with the optical nonlinearity in

the absence of Coulomb interactions. This argument is

supported by the saturation of these curves as the
Coulomb interaction is turned on. The saturation size de-
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FIG. 2. The variation of coherence size N, as defined from
Fig. 1(a) with molecular size and the Hubbard interaction U.
(a) N, vs U. From top to bottom, N 94, 80, 70, 60, 50, 40, 30.
(b) N, vsN. From top to bottom, U 0, 1, 2, 3, 6, 9, 12eV.

FIG. 3. (a) Variation of the maximum electron-hole separa-
tion (exciton size) «' with molecular size for different values of
the Hubbard interaction U. From top to bottom, U=O, 1, 1.5,
2, 3, 6, 9, 12 eV. (b) The slope b' (b'= d« /dN) of t—he various
curves in (a). The value of N where b' 1 defines the exciton
coherence size N, .

creases with the Coulomb interaction strength which
determines also the bound exciton size. Dramatic and
clear-cut evidence of the exciton coherence size is shown

in Fig. 1(b). The exponent b drops abruptly to 1 at a
critical size. We define that point as the nonlinear coher-
ence size N, related to the static gt ). Further support
for this physical picture is provided in Fig. 2, where we

display the variation of the nonlinear coherence size N,
with N and with U. For U=O we have N, =N. As U in-

creases, N, decreases as is to be expected for an exciton
(phase-space-filling) picture [9]. In general the exponent
b varies continuously with N. The commonly used scal-
ing form g -N is therefore limited to a small range of
sizes N. In order to explore the nature of the excitons in

conjugated polyenes, and to prove our interpretation of
the scaling of g, we have calculated the time evolution
of an electron-hole pair following a homogeneous (k=0)
and an impulsive (b-function) excitation pulse at t=O.
The initially prepared (unnormalized) doorway state is

g,p, Y,,a~0&, (0) being the vacuum state. The probability
P, (t) of the pair to be separated by s double bonds (s =0,
1, . . . , N 1) at time t is then cal—culated by solving our
equation of motion for Y, p(t) [setting the field E(t) =0].
A useful measure of the degree of delocalization of
the pair is the inuerse participation ratio [10], «(t)
—= I/g, P, (t). If the pair is distributed over M sites then
P, (t) —M ' and therefore tc-M. We found that ini-
tially «(0) —1 irrespective of U (the electron and the hole

are created in close proximity since the transition dipole

p, is peaked at s=0 and s=l [11]). The subsequent
time evolution of the pair depends on the nature of the
exciton states of the system, and tr(t) was found to vary
sinusoidally with time. Its amplitude (denoted «) is a
measure of the exciton size.

In Fig. 3 we display x vs N for different values of U.
For the Hiickel model (U=O) the pair is uncorrelated
and x =N. As U is increased, the electron and the hole
become more tightly bound by the Coulomb interaction
and r decreases. The figure thus clearly illustrates the
formation of a charge-transfer bound exciton which be-
comes more Frenkel-like as U is increased. Comparing
different curves in Fig. 3, we see that the exciton delocali-
zation length decreases with the Coulomb interaction
strength. As long as the molecular size is smaller than
the coherence size, the amplitude increases with N. The
variation of ~ with molecular size N is a clear signature
of the coherence size of the elementary excitations. The
slopes of the curves of Fig. 3(a) b'= dx /dN are —dis-

played in Fig. 3(b). In a way strikingly similar to Fig.
1(b), we see that the slopes vanish at a critical molecular
size. This size is equal to the exciton coherence size and
will be denoted N, . In Fig. 4 we display the variation of
N, with N and U. The resemblance of these variations to
Fig. 2 clearly indicates that N, =N, . This is confirmed
by Fig. 5 where we show the correlation between N, and
N, . The remarkable correlation firmly establishes that



VOLUME 69, NUMBER 1 PHYSICAL REVIEW LETTERS 6 JUL+ 1992

100— 150—

80—
100-

40

20—

50—

4 U (eV) 8 12
0

'

0 50 100 150

160

120

80

c
FIG. 5. Correlation between the coherence size N, associated

with the magnitude of gt 1(0) and the exciton coherence size N,
obtained from the time-dependent participation ratio. The two
sizes are virtually identical. The comparison is for polyace-
tylene with N 160 at different values of Hubbard interaction
U. From large to small N„U 1, 1.2, 1.5, 2, 3, 6, 9, 12, 14.
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FIG. 4. (a) The variation of the exciton coherence size N, as
defined in Fig. 3 with Hubbard interaction U. From top to bot-
tom, N 94, 80, 70, 60, 50, 40, 30. (b) The variation of N,
with molecular size for different values of the Hubbard interac-
tion U. From top to bottom, U 0, 1, 2, 3, 6, 9, 12 eV.

the scaling and saturation of g with molecular size may
be attributed to the exciton coherence size associated
with the relative electron-hole motion. The present calcu-
lation of polyacetylene (U=11.26 eV) yields N, =21
which corresponds to a coherence size of 58 A. This
value is in agreement with previous experimental [1,9(b)]
and theoretical [5,9(c)1 estimates of 40, 25, and 60 A.

The present theory interpolates between the Frenkel
and the Wannier excitons by continuously varying the na-
ture of the relevant anharmonic oscillators. The scaling
and saturation of the nonlinear response of conjugated
polymers with size can therefore be directly related to
other recent studies of molecular and semiconductor
nanostructures [9,10]. Our calculations demonstrate the
uncorrelated nature of the electron and the hole in the
Huckel model, and how the Coulomb attraction of the
electron-hole pair changes the nature of the elementary
excitations which closely resemble charge-transfer (inter-
mediate) excitons. In addition, the oscillator framework
provides a real-space picture for the nonlinearity and thus

yields a physical and intuitive insight. Recent resonant
spectroscopic and theoretical studies have suggested the
existence of a few "essential" states which dominate the
optical response including two-photon resonances in

two-photon absorption and third-harmonic generation
[5(a),6]. The equations of motion automatically focus on

the relevant and essential coordinates of the problem and

thus provide this picture most naturally.
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