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We consider a dilute hard-sphere Bose gas in random external potentials at low temperatures, in

D 3, using the technique of pseudopotentials and the Bogliubov transformation. At absolute zero, the
random potentials can deplete the Bose condensate, though not completely. On the other hand, they
generate an amount of normal fluid equal to —, the condensate depletion. This is a localization eA'ect

that can destroy superfluidity at absolute zero. General features of the superfluid density in the neigh-
borhood of this transition point agree qualitatively with experimental results on helium in porous media.

PACS numbers: 67.40.Bz, 05.30.3p, 64.60.Cn

We report on some results concerning the low-tem-
perature properties of a dilute hard-sphere Bose gas in

random external potentials in three dimensions. Such a
model is a crude simulation of superfluid helium in

porous media [1]. The spongelike media are here ideal-
ized as random distributions of hard-sphere potentials.
To make the problem tractable, we further assume that
the randomness is sufficiently dilute, and the temperature
sufficiently low, that the hard spheres can be approximat-
ed by delta-function pseudopotentials [2]. We also as-
sume that the potentials are distributed with uncorrelated
randomness. Thus, the very large pores that are ap-
parently present in the experimental media are not taken
into account here. The purpose of this study is not to
construct a quantitative model for the experiments, but to
illuminate some qualitative features. We are able to

!
show, for example, that at absolute zero superffuidity can

be destroyed by the randomness, through an eA'ect sug-

gestive of boson localization.
From a theoretical point of view, the interparticle in-

teractions are necessary to prevent a total condensation
into a single localized orbital in the external potential.
Thus, unlike the much-studied case of fermions, one does
not have the luxury of treating the potentials as perturba-
tions on a free-particle Hamiltonian. Here we do the
next best thing, namely, start with the simplest soluble
problem involving interparticle interactions —a dilute
hard-sphere gas at low temperatures [2,3]. This ap-
proach diff'ers from previous eA'orts on this subject [4,5],
in that ours is a microscopic low-density low-temperature
model, rather than a phenomenological "tight-binding"
model. It may illuminate the problem from a diA'erent

angle.
We consider a grand ensemble with chemical potential

p, with Hamiltonian H given by (with tl =1)

H pN=) d x—tltt[ —(I/2m)V —p+Uly+ 2 vo d xy ly ytlt,

v -'&I Uk I')„=Re, (2)

where V is the total volume of the system, Uk is the
Fourier transform of U(x), and the subscript av denotes
a quenched average over potentials. It has dimension
(energy) (length), and is (average density) x (mean-
square strength) of the individual scatterers, the strength

where tlt(x) is the field operator for nonrelativistic boson
of mass m, N =Id x arty is the number operator, U(x)
is the external potential, and v0=4tra/m, where a is the
hard-sphere diameter. The ground-state energy is ren-

dered finite by subtracting an appropriate divergent con-
stant [3].

The external potential U(x) may be pictured as a sum

of randomly located scattering centers of random
strengths, either attractive or repulsive. We assume
(U(x) U(y))„ce b (x —y), and characterize the potentials
by a single parameter Ro,

i
being measured by the spatial integral of the potential.
Keeping Ro fixed while varying the density of the bosons
is like varying the coverage of the liquid helium in a
porous medium.

Proceeding in a standard fashion [3], we introduce
free-particle annihilation and creation operators ak and

ak, and assume the single level with k =0 is macroscopi-
cally occupied, with occupation number Ao. We refer to
no=No/V as the condensate density. In the expansion of
H in terms of ap and ap, we neglect all oA'-diagonal terms
except those of the forms voattattat, at, and Ukattak, and

their Hermitian conjugates. We then replace a11 oc-
currences of a&& and atI by the c number Nt'jl Thus, the.
only processes considered are the annihilation of a pair
[k, —k] into the condensate through the hard-sphere in-

teraction, the scattering of a single particle k into the
condensate by the random potentials, and the correspond-
ing inverse processes. The eAective Hamiltonian is
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H, tt
—pN=V( —pnp+ & vpnp)+ g —p+2vpnp a/, ak

k~p 2m
i 1/2

no t [ t s+ g (Uka/, +U ka—k)+ 2 vpnpg (aka k+—aka ~)+ g agak
k~p k~0 V k~p

(3)

The last term is important when the condensate becomes
depleted. We treat it in a mean-field fashion by making I ~, t i +Z kakak1 —nl+ng
the replacement ~ k~O

Z akak n' akak,
kwp k&p

(4)

where n' is a parameter to be determined later. The
small parameters in our perturbation theory are a and

Rp.
The effective Hamiltonian is diagonalized by a Bogo-

liubov transformation

m np

8 3/2

~ &/2

Rp,

(n a)'/'
3

+ 4 t 2(t+ 8/2)

(t +8)' jexp[t(t +8)' ) —I]
(9)

Ck CkC -k
(I a)) l/2

I noUk 1
—ak

COk V 1+ak

&/2

(5)

where

al, =1+x—4x(x+2), cop vpnpdx(x+2),

v p(n p+ n') —px~ +h„
2mnpvp vpnp

(6)

H, tt pN = V( —pnp+—Ep)+ g tokckck,
k~p

(7)

We set 6 =0, to ensure that the quasiparticle spectrum
top has no energy gap, in conformity with general
theorems [6]. This condition determines n'. The diago-
nalized quench-averaged Hamiltonian has the form

42trP/m, 8 2Pvpnp,

where nl arises from the hard-sphere interactions [3,7].
It is very small at absolute zero, and rises quadratically
with increasing temperature. The term ntt corresponds to
condensate depletion due to scattering of condensate par-
ticles with the random potentials. The fractional de-

pletion is of the order of m Rp/dna The. factor I/Ja
underscores the fact that the system would collapse if
there were no interparticle interactions. The depletion
can be substantial within the validity of our approxima-
tions. On the other hand, there cannot be total depletion,
for no 0 is not a possible solution at absolute zero, for
any finite Rp. (See below. )

The superfluid density n, is obtained by considering the
response of the momentum density to an externally im-

posed velocity field [8,9]. The relevant response function
1S

R'/(x, t) -([g'(x, t),g/(0, 0)])

|.'p = 2$an
I + I 28

( 3 ) l/2 + 2 —K2 „3/2 l/2Ro .
m 15 z z

3l' d kdto;&l, „,)R,/(k ).
(2tr) 4

g'(x, t) -(2i) 'yt(x, t)8'l//(x, t),

(10)

The first term recovers well-known results [3].
The grand partition function 6 =Tr exp[ —P(H—pN)] is a sum over N p, but we keep only the largest

term. Thus, p and Np are determined by the two condi-
tions [7]

where y(x, t) is a Heisenberg operator. The static sus-
ceptibility is given by

; (k)
I' dto R'J(k, to)

4 2$ N —EE

8 In 1=0, n =np+ —g (akak),
t1np V Vk~p

(8)
k'ki k'k'

2
A(k )+ 8; — B(k )

k

where n is the particle density and ( ) denotes grand en-
semble average. From these conditions we can obtain n'

and np as functions of n and the temperature.
The average number of particles with nonzero momen-

tum represents a depletion of the condensate

The transverse susceptibility B(0) is the normal fluid
mass density. The superffuid mass density is accordingly
p, =p —B(0), where p is the total mass density.

Using particle conservation, one can show that A(0)
=p, which is a form of the f-sum rule. Thus one some-
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times writes p, =A(0) —8(0). However, this is not val-

id for the present calculation, because particle conserva-
tion was violated in replacing ap by a c number. We have

in effect truncated the Hilbert space, leaving out

the subspace spanned by single-particle states of zero
momentum. Thus, computations involving the time evo-

lution of zero-momentum particle states would be
falsified. On the other hand, the nonzero momentum sec-
tor should be unaffected (as long as second-order effects
of the zero-momentum states are unimportant). In the
present context, this means that we can trust a calcula-
tion of 8(0) but not A(0). Accordingly, we calculate the
superfluid density through p

—8 (0), and not A (0)
—8(O) [io].

The calculation of 8(0) is quite tedious. The
superfluid density n, p, /m is found to be

4
n, =n —n2 —

3

3m" (2n)'
(i2)

n, = —,
' [4(no+ n1) n], — (i3)

which vanishes when the condensate is roughly 4 deplet-

ed by the random potentials. This result means that part
of the condensate, which is made up of zero-momentum

particles, belongs to the normal fluid, i.e., they are

dragged along by the random potentials. This indicates

localization, or formation of bound states of macroscopic
extensions.

We can obtain no at low temperatures (T 0) from

(8) by iteration. Using this result, we then calculate n,
as a function of n and T. Neglecting a term of order

(na ) '/ for simplicity, we have

T &1(e) T+
cosh/ T1 (na ) '/ T1

E.

P1p 2p

n

8 ' t exp[ —t (t '+ 8) '"]
dt

[I —exp[ —t(t'+8)' ']['
where n~ =[exp(pa3~) —1] ' is the average number of
phonons. There is an elementary derivation of n2 based

on Gallilean invariance in the absence of random poten-

tials [11],but we know of no intuitive way to obtain the

term 4ntt/3 The .factor 3 indicates that the random po-

tentials generate more normal fluid than they took from

the condensate. This makes it possible to destroy

superfluidity at absolute zero. To see this, note that from

n/t n —no —n1 and n, n ——, ntt, we have4

m Rp
sinhp =

16n3"dna
'

T =43/2/t m 'n'/' '"
(1 s)

5y 4

&2(P) = „, 1+ tanhy
16tr' ' 20~2

At T=O, no never vanishes. On the other hand, n, =0 at
& =In 2, which corresponds to a critical density n, given

by n, a =(m aR&) /36m . This value lies within the re-
gions of validity of our approximation.

Figure 1 shows a 3D plot of n, as given by (14), for
certain values of a and Ro. The surface has a nose shape,
which describes a kind of "reentrant" behavior. General-
ly, n, rises quadratically with T, goes through a max-
imum, and then vanishes linearly at a critical tempera-
ture, which is roughly given by T, 1xan/m, except near
the tip of the "nose." The critical index is thus the same
as that for the ideal Bose gas. This is in agreement with
experimental results on liquid helium in porous media.
But the nonmonotonic behavior of n, has not been detect-
ed so far.

It may seem curious that n, initially increases with T.
%e have to remember, however, that n, is strongly
suppressed by the random potentials at T 0. As T starts
to increase, the suppression is lessened, because less nor-
mal fluid is generated by the random potentials, due to
the fact that no decreases.

Going back to (8), we can study the thermodynamic
behavior near np=0, i.e., the Bose-Einstein transition
point of the ideal gas. In this region our model is similar
to a soluble one [12], in which a31, is replaced by k /2m.

II 'II 2
n,—=

& (4e ~ —1)+—', e~tanh111
n T]

(i4)

where

K2(y) T
( 3)1/2 T

4

FIG. 1. Superfluid density as function of temperature and
density, in the neighborhood of the superfluid transition point at
absolute zero.
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The isotherms are of the van der Waals type, exhibiting
first-order phase transitions, with a very narrow transition

region, of order (na ) 'I . The presence of random poten-
tials does not change the qualitative behavior. Because
scattering between quasiparticles has been neglected,
however, the model cannot be taken seriously in this
domain.

In regard to low-temperature phase transitions, our
theory is of the mean-field type, because all fluctuations
in the condensate have been ignored. In this approxima-
tion, the condensate cannot react to the destruction of
superfluidity. For this reason, no specific heat singulari-
ties appear at the transition point, and the condensate
remains structureless in the region n &n„ the so-called
"Bose glass" phase. These inadequacies can be remedied
only by improving on the Bogoliubov transformation,
which we are attempting to do.
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