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Three-Dimensional Model for Particle-Size Segregation by Shaking
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A three-dimensional model for particle-size segregation by shaking has been developed and used to
study the upward motion of a large sphere in a random packing of smaller spheres. In this model segre-
gation occurs only for values of the diameter ratio (4) above a critical value 4,=2.8. The ratio of the
upward velocity of the large particles to their diameter is greatest for values of 4 just larger than 4, .
The simulation results can be understood in terms of a simple theoretical model that becomes exact in

the limit @

PACS numbers: 64.75.+g, 05.70.Jk, 46.10.+z

The segregation of particles with different properties is

a ubiquitous process of major importance in areas as
diverse as agriculture, geophysics, materials science, and
almost all areas of engineering. Segregation can be
brought about by many processes including pouring,
shaking, vibration, shear, freeze-thaw cycling, and fluidi-

zation. In most cases the particle size is by far the most
important property controlling segregation and size segre-
gation is observed even in processes designed for particle
mixing [1-3]. Because of its practical importance
particle-size segregation has been studied extensively (see
Refs. [4-10] for example) during the past few decades.

A growing interest in complex phenomena and disor-
dered systems within the physics community has led to
the recent development of simple two-dimensional models
for size segregation by shaking [11-14] as well as both
two-dimensional [15-18] and three-dimensional [17,18]
models for size segregation by flow. Another segregation
mechanism [19] that has been studied using computer
models is the percolation of small particles through a
random three-dimensional packing of larger particles
[19,20].

In this Letter we describe results obtained using a mod-

el for size segregation by shaking that is simpler and
more efficient than previous models. This model allows

us to carry out simulations using a large number of parti-
cles (up to 10 or more) and to explore size segregation in

three-dimensional systems.
Our model is based on the random-packing model of

Visscher and Bolsterli [21] in which particles (spheres)
are deposited, one at a time, via randomly located vertical
trajectories onto a horizontal substrate. After first con-
tacting the growing deposit the particles follow a path of
steepest descent on the surface of the deposit until they
reach either the substrate or a local minimum (a position
at which the vertical projection of the center of the depos-
ited particle lies within the triangle formed by the vertical
projections of the centers of three contacting particles in

the deposit). Immediately after reaching a local mini-
mum or contacting the substrate the particles are incor-
porated irreversibly into the growing deposit. A more

complete description of this model can be found in the
literature [21-23]. Our size-segregation simulations are
started by generating a random packing using this algo-
rithm with spheres of two (or more) sizes. After the ini-

tial packing has been constructed the particles are placed
in a list in order of ascending height (of their centers)
and then redeposited in that order retaining their hor-
izontal coordinates until contact is made with either the
substrate or the growing deposit. The process of ordering
according to height and deposition (with steepest descent
to the local minima) is repeated many times to simulate
the shaking process. Our model corresponds to a large-
amplitude, low-frequency vertical shaking process with a
large dilatation of the packing. It is assumed that the
packing comes completely to rest after each shake. %e
neglect multiparticle effects such as arch formation and
collective effects such as fluidization. Despite these ap-
proximations we believe our model captures the essential
features of the segregation process.

Figure 1 illustrates a typical simulation with 4=4
where 250 large spheres and 50000 small spheres were
initially deposited randomly on a square base of size
16x16, in units of the large-sphere radius (with periodic
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FIG. 1, A vertical cut through a packing made with 250
large spheres and 50000 small spheres with a diameter ratio
@=4. From left to right the initial configuration and the pack-
ings after thirty shakes and after sixty shakes are shown.
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boundary conditions in the lateral directions). Vertical
cuts through the deposit are shown for the initial
configuration and after thirty and sixty shakes. The up-
ward motion of the large spheres can be clearly seen in

this figure. In this Letter, we focus our attention on the
case where one large sphere was initially deposited near
the bottom of a packing of small spheres.

Figure 2(a) shows the time dependence of the height,
z(t), of a single large sphere divided by its radius R for
different 4 values. Here, the time t is the number of
"shakes" and z(0) =0. We found a clear change of be-
havior at a threshold value 4, =2.8. While for t1I(4,
the maximum upward displacement, z, remains finite,
for Ip) 4„ there is a monotonic upward motion z =vt
characterized by a well-defined velocity u. The change of
behavior at 4, is like that at a second-order phase transi-
tion where z plays the role of a correlation length that
diverges when Ip approaches 4,. However, we found that
z depends strongly on the initial packing configuration.
Consequently we would need to make an average over
many runs to obtain a continuous curve for z (4) and

25-
(a)

estimate an exponent. The ratio v/R is largest at the
threshold (v,/R=0. 35). Above 4, the ratio v/R seems
to decrease towards an asymptotic value v /R as @
[Fig. 2(b)]. We have not obtained an accurate value for
this asymptotic ratio from our simulations since much
more computer time is required for large values of @.

The monotonic upward motion above N, can be under-
stood by using a simple analytical model which becomes
exact in the limit @ . Here we make use of the "an-
gle of the repose" a as an input parameter. As is clearly
suggested by the simulations at large 4 values (see Fig.
3) we suppose that in the steady-state regime a conical
hole, tangent to the sphere, lies beneath the large sphere.
The velocity is determined by the upward displacement b
after one shake. Since all small particles that are located
below the large-sphere center will be deposited before the
large sphere, this cone will be partially filled prior to the
large-sphere deposition. During each shake, the small
spheres that are in the annular region (1) [whose cross
section is indicated in black in Fig. 4(a)] will slide into
region (2) [whose cross section is indicated in black in

Fig. 4(b)]. After some simple algebra we can express the
volume Vi of region (1) as a function of a and R (the ra-
dius of the large sphere),
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and, after equating this volume to the volume V2(b) of
region (2),
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According to this formula, v should decrease monotoni-
cally from R to 0 when a increases from 0 to Ir/2. We
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FIG. 2. (a) Dependence of the large-particle altitude z(t) on

the number of shakes t for simulations with one large particle
and various diameter ratios. (b) The velocity v(@) as a func-
tion of the diameter ratio N for @&+,. The location of N, and
the asymptotic value v obtained from the theoretical model
are indicated by vertical and horizontal arrows, respectively.
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FIG. 3. Uertical cut through a packing containing one large
sphere in the steady-state regime from a simulation with a large
diameter ratio @ 10. The configurations after three successive
shakes are shown.
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FIG. 4. The model for an infinite diameter ratio (4 ~).
(a) and (b) correspond to configurations before and after one

shake, respectively.

have estimated the angle of repose for our model in a
separate simulation in which equal-sized particles were
deposited uniformly outside of a circular region, leaving a
conical hole in the surface of the deposit. We have found
a=54' (the same value that was obtained earlier for a
heap [17]). This gives the estimate v /R=0. 07 which is
shown in Fig. 2 and which is consistent with the data ob-
tained for 6nite 4 values. Here the value of the angle of
repose is imposed by our algorithm. In most real systems
it is smaller than 54' because of avalanches and other
multiparticle effects.

This calculation allows us to better understand the
geometrical mechanism involved in the upward motion of
the large sphere. The presence of the hole beneath the
sphere is essential to its upward motion. Moreover the
larger values of the velocity for finite 4 and the existence
of the threshold can be qualitatively understood by in-

cluding finite-size effects. The mean shape of the hole
should deviate from a cone for finite 4 and the angle a
should be replaced by an effective (smaller) angle in Eq.
(3), giving a larger value for v/R. The threshold @,
occurs when the small spheres are too large for their
centers to have a chance to lie in volume (1).

A rich phenomenology is associated with particle-size-
segregation processes but it appears that the ability of
small particles to fill voids that develop beneath large par-
ticles (and to remain beneath the large particles prevent-
ing their fall) plays a key role in many systems. In the
Monte Carlo model of Rosato et al [12-14] this .mecha-
nism has a stochastic origin. In our model only the con-
struction of the initial packing is stochastic. The segrega-
tion process is completely deterministic. It is clear that a
simple model such as that described in this Letter cannot
represent all the complex processes that occur in real sys-
tems (inelastic collisions, friction between particles, mul-
tiparticle interactions, etc.). However, this model does
appear to capture the essential features of many size-
segregation phenomena and leads to interesting predic-
tions that could be compared with experiments. Our re-
sults are consistent with some experiments [6] in which

the segregation rate was found to increase when the size
of the large particles was increased. It would be interest-
ing to test experimentally the linear dependence of the
upward velocity on the radius of the large spheres in the
limit of large @values.

The existence of a critical diameter ratio (@,) below

which segregation does not occur, with a maximum of the
ratio v/R for iIi=@„is a distinctive characteristic of this
model that could also be tested experimentally. However,
the critical ratio decreases as the angle of repose de-
creases (to a value of about 1.5 at 35'). Preliminary re-
sults show that a corresponding two-dimensional model
leads to a much larger (4 times greater) critical ratio so
that it might be easier to observe the segregation thresh-
old in pseudo-two-dimensional experiments. A critical di-

ameter ratio is also a characteristic of the quite different
percolation [19,20] model for size segregation. Most oth-
er size-segregation models are too complex for theoretical
analysis and do not permit extensive enough simulations
to determine numerically if a size ratio threshold exists.

The most important advantage of our model is that it
leads to a simple geometrical explanation of the rising
mechanism and of the existence of a critical diameter ra-
tio. We have also used this model to study the compac-
tion of both monodisperse and polydisperse packings and
to simulate the relaxation of heaps induced by shaking.
Very similar models can be used to study the effective in-

teractions between large particles and their motion near
container walls.
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