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Polyampholytes are polymers composed of positive and negative charges randomly quenched along the
chain. We examine configurations of such macromolecules by Monte Carlo simulations and analytical
arguments. Polyampholytes with an overall constraint of charge neutrality are found to collapse into
compact globules. Without such a constraint, on lowering temperature, the chain initially reduces its
size and then becomes stretched due to a net charge imbalance. Experimental preparation conditions
(water or organic solvent) determine if the polymer is overall neutral or randomly charged.

PACS numbers: 36.20.Ey, 64.60.Cn, 82.35.+t, 87.15.By

A challenging topic of much current interest is the ex-
tent to which the complexity of biological systems can be
mimicked by relatively simple physical models. For ex-
ample, there have been several attempts to unravel the
structure and folding of proteins [1] using concepts from
the statistical mechanics of random systems and spin
glasses [2-4]. Typically the macromolecule is represent-
ed as a linear sequence of monomers subject to a variety
of interactions which ultimately determine its overall
shape. One of the simplest examples is the polyampho-
lyte (PA), composed of a random sequence of positive
and negative charges [5]. Such polymers were first con-
sidered theoretically by Edwards, King, and Pincus [6] as
an example of a “microelectrolyte.” Two recent studies
of this problem, however, have led to opposite conclusions
on whether the configuration of a typical PA is stretched
[7] or compact [8]. Resolving this discrepancy may also
be relevant to observations on polyamphilic gels [9], and
experiments on dilute PAs [10].

Motivated by the above, we reexamine the conforma-
tions of PAs, and find a behavior very sensitive to the
presence of constraints and the choice of ensemble. A
polymer constrained to have zero net charge collapses to
a compact configuration upon reducing temperature. On
the other hand, if L monomers are randomly assigned
positive or negative charges, £ go with equal probability,
the resulting polymer typically has a small overall charge

q(x)q(x")

of order of qo\/f . Independent of its sign, this deviation
from neutrality is sufficient to stretch the chain to an ex-
tended state at low temperature. The size of the polymer
in the latter case has an unusual nonmonotonic depen-
dence: It first decreases upon reducing temperature be-
fore becoming extended below a characteristic point. In
an annealed ensemble the constraint of charge neutrality
is automatically enforced due to the lower energy of neu-
tral polymers. By contrast, the quenched ensemble is
dominated by polymers of charge +qoVL. The two
different types of PA may indeed result from different
preparation conditions. Consider a PA prepared by poly-
merizing a dilute solution with equal concentrations of
positive and negative monomers. If the electrostatic in-
teractions are strongly screened by addition of salt, there
is no energetic incentive for overall neutrality. Other-
wise, in the absence of screening, the energetics favors
neutral PAs.

The PA is modeled by a linear sequence of charges
gi = 1 1, whose locations in space are labeled by a set of
vectors r;. It is convenient to also adopt a continuum
description in which monomer configurations are de-
scribed by r(x), where x is the internal label for the posi-
tion of a monomer along the chain, and for generality r
is assumed to be a d-dimensional vector. Each PA is
specified by a particular charge density q(x), which is
quenched along the chain and on average zero. The
Hamiltonian for the polymer now takes the form

+089%0(x) —r(x")) | .
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The first term is the entropic elasticity of the polymer
with a force constant K. The second term represents the
two-body interactions between the monomers, composed
of a long-ranged electrostatic component, and a short-
ranged steric repulsion of strength v. We first briefly
summarize the competing arguments for typical confor-
mations that result from this Hamiltonian.

Elaborating on earlier arguments [6], Higgs and Joan-

kgT|r(x) —r(x")|9"?

0))

ny [8] suggest that the polymer collapses to a state with a
radius of gyration, R, significantly smaller than its value
in the absence of the charges. This collapse is assumed to
result from an attractive interaction due to screening of
the long-range electrostatic forces. The screening length
I is related to the density n=L/V=~L/R¢ by I
~(kpT/nq$)". The magnitude of the attractive part of
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the free energy is then estimated from the Debye-Hiickel
(DH) theory [11] of electrolytic solutions as

Fe ~ _kBTV/[dz —qud/zRg—d(d/z_l)(kBT)I_d/z.

This attraction reduces the polymer size, until the pres-
sure of excluded-volume interactions prevents further col-
lapse. For future reference we present the temperature
dependence of R, in 4 =3 using scaling arguments: Typ-
ical electrostatic energies for the polymer scale as
qé"L/Rg. This is obtained, for example, by considering
the interaction of two halves of the chain, each with a
nonbalanced charge of order gov/L, while the typical dis-
tances are of order of R,. At very high temperatures in-
teractions are not important and Ry =~ al " where a is a
typical microscopic length. For a neutral self-avoiding
chain in d=3, vo=0.59. Electrostatic interactions be-
come important when q&L/RgszT, at a temperature
To=q3L/Rgkp =~ (qL/akg)L ~"™. The temperature
variations of R, should depend on the dimensionless vari-
able z=T/T,, i.e., R, =aL"G(z), with G(z) = const, for
z>1, and G(z) = z° for z < 1. The exponent a depends
on the state of the PA at low temperatures. The assump-
tion of a compact polymer [8], ie., R;~L ' in d =3,
then implies a =(vo— + )/(1 — vp).

By contrast, Kantor and Kardar [7] study the PA using
a scaling approach similar to the treatment of homogene-
ously charged polymers [12,13]. First note that under a
rescaling x— Ax and r— A'1, charge correlations scale
as (g(x)q(x'))— (g(x)q(x'))/r, where () denotes the
average over all quenched configurations. [This follows
from (g(x)q(x'))x8(x —x').] Thus, in d dimensions,
the elastic and electrostatic terms are respectively res-
caled by A’® and A’¢, with the bare dimensions yx
=2v—1 and yc =1—(d —2)v. The Gaussian chain with
v=1 becomes unstable to interactions for dimensions
d =<3. Charge conservation [13] implies that Coulomb
interactions are not renormalized for uniformly charged
polymers. The exact exponent v is thus obtained by set-
ting the bare dimension of the interaction to zero. As-
suming a similar nonrenormalization for randomly
charged polymers, Kantor and Kardar conclude that
v=1/(d—2) from yc=0. The PA in d=3 is thus fully
stretched with v=1 according to this argument, which in
essence states the following: When individual charges are
uncorrelated, the total charge is of order of goVL, result-
ing (in d=3) in an electrostatic energy of order of
g8L/R,. Equating this energy to kg7 then gives R, ~L.

The disagreement between these two conclusions is
quite extreme, in that one predicts a compact config-
uration and the other a stretched state. In fact, neither
solution is exact: One [8] employs the DH theory whose
applicability to a polymer, even in the dense state, has not
been established, while the other [7] substitutes dimen-
sional arguments for a true renormalization-group (RG)
treatment. We also note a very important conceptual dis-
tinction between the two: The DH approach implicitly
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assumes that the polymer is overall neutral (or at least
very close to neutrality), while the scaling results rely on
typical excess charges of order of =+ goVL in the various
quenched configurations. Since the number of random
charges grows as L, the naive expectation is that imposing
the constraint of neutrality should not affect the large-L
asymptotic behavior. Indeed, if we randomly scatter
exactly L/2 charges —qo and L/2 charges go on
L monomers, we expect (in the discrete case) (giq;’
=q4[8;;(1+1/L) —1/L], where i and j are the discrete
indices of the monomers. Although the additional corre-
lations due to the neutrality constraint decay as 1/L, it
has important consequences that are explored in the
remainder of this paper.

We performed Monte Carlo (MC) simulations for ran-
domly charged chains of L =4, 8, 16, 32, and 64 mono-
mers. The monomer positions were discretized to a cubic
lattice (d=3), and the polymer connectivity was imple-
mented by restricting the maximal distance between
neighbors to 4. Such nearest-neighbor ‘“‘square well” po-
tentials have been previously used in continuum simula-
tions of tethered surfaces [14] and discrete simulations of
linear polymers [15]. The excluded-volume interaction is
implemented by not allowing two monomers to come
closer than 2 lattice constants to each other, and the
electrostatic interaction U =X »U;;(|r; —r;|) by assign-
ing energy U(r)=c'qiq;/(c+r?)'?* to every pair of
charges at a distance r from each other. (We set ¢ =2,
c'=4, and ¢;= * 1 dependent on the quench.) In a sin-
gle MC time step, an attempt is made to move every
monomer by one lattice spacing in a randomly chosen
direction, and the resulting configuration is accepted or
rejected according to its Boltzmann weight. For each
quenched configuration of {g;}, the PA is first equilibrat-
ed at a temperature 7> Ty, and then cooled through a
sequence of lower temperatures by halving T each time,
over a range of three decades. At each 7, 2500L MC
time steps are performed. The high-T equilibration time
7 is estimated as the time the polymer requires to diffuse
its own radius of gyration Rg~LV°, leading to ¢
~ L™ Thus, even for the longest chains, our equili-
bration time exceeds 7 by a factor of 20. We also expect
to have good equilibration at lower temperatures, except
possibly at almost vanishing temperatures where the poly-
mer freezes into a minimal energy configuration. The
procedure is repeated for different quenches (twenty
quenches for L =4, 8, and 16, ten quenches for L =32,
and five quenches for the longest chain), and the results
are averaged over the quenches.

We first describe results for exactly neutral polymers
constructed by assigning a charge of +1 to half of the
monomers and — 1 to the rest. The temperature depen-
dences of R, for different values of L are presented in
Fig. 1. In accordance with the expected data collapse, we
scaled R, and T with appropriate powers of L, using the
(effective) exponents v and a as fitting parameters (8
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FIG. 1. The scaled R? is plotted against scaled temperature FIG. 2. Same as Fig. 1, but for polyampholytes without the
T for polymers that are overall neutral. Distances are measured constraint of overall charge neutrality. (In this plot v=0.57.)
in lattice constants while the temperature is in units of electro-
static energy divided by ks. Open squares, open triangles, solid
hexagons, solid squares, and solid triangles correspond to . .
L =64, 32, 16, 8, and 4, respectively. The straight line indicates T somewhat sma!ler than Ty positive and negative
the expected slope for compact conformations. charges start to pair up, thereby reducing the chain size.

At lower T the “excess charges” can only reduce their en-
ergy by stretching the entire chain: The chain “unfolds”
=2v—a). The best fit is obtained for v=0.55 and into a stretched linear or branched object with folded

a=0.40, with uncertainties of about *+0.02. It is im- “double strands.” On average, at very low temperatures
mediately obvious from Fig. 1 that the neutral PA indeed Rg~L as predicted by Kantor and Kardar [7]. A visual-
collapses at low temperatures as predicted by Higgs and ly compelling illustration of the importance of neutrality
Joanny [8]. While the data collapse is quite reasonable, is presented in Fig. 3 which depicts the compact con-
we note several deviations from the expected behavior: v figuration of a neutral PA, and the stretched conforma-
is smaller than its known value of about 0.59. This result tions obtained by breaking the same polymer in half (the
is not particularly surprising for relatively short chains two halves typically have opposite nonvanishing charges).
with a moderate excluded-volume interaction, due to the An unusual aspect of the numerical results is the non-
crossover between Gaussian and self-avoiding behaviors. monotonic variation in size of the unconstrained PA with
Similarly, @=0.40 corresponds to a collapsed state in temperature. While stretching of the PA due to excess
which Rg~L°'37. It is again likely that the exponent of charge is not surprising, its initial collapse at higher tem-
0.37 (instead of 1/3) also represents a crossover. peratures is unexpected. Fortunately, some insight into
Very different results are obtained when the charges the high-temperature behavior can be obtained by pertur-
are selected randomly without regard to overall neutrali- bation theory. We start with the Hamiltonian in Eq. (1)
ty, as depicted in Fig. 2. As temperature decreases below with v =0, and treat the electrostatic interactions pertur-
T the radii first contract and then reexpand. Actual pic- batively. To the first order in the interaction, the aver-
tures of polymer configurations indicate the following: At aged end to end distance R(L)2=|r(L) —r(0)|?in d=3
| is given by
2 x=x]"2 ,

R@WH=2L1+ ] S [ axax e (aWe )>}. @

If there is no constraint of overall charge neutrality, r
{g(x)q(x"))=0, and there is no correction to the polymer
size at this order. By contrast, if the polymer is con-
strained to be neutral, (g(x)q(x'))=—g§/L, leading to a
reduction in polymer size,

3L [1— 8v3_ To
K 4sv2n T

be carried to second order and the final result is

2
(11T
2 T

3) This correction again reduces the size of the PA at high

temperatures, in agreement with the numerical results.

However, we note that whereas the reduction in size of

where T¢ =LKq3/3k3. To see the first correction to the  the neutral polymer starts at order of 1/7, that of the un-
size of the unconstrained PA, perturbation theory must constrained polymer begins at order of 1/T% Clearly

(R(L) 2)mndom = l[;

X @)

(R (L) ) neutral =
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FIG. 3. The low-temperature configurations of a neutral
polymer, and its two halves.

higher-order terms in the latter case must be of opposite
sign to lead to the eventual stretching of the polymer.
This suggests that reorganizing the perturbative results
into a rigorous RG may be difficult for this problem.
Such an RG has been attempted for the case where the
interactions due to random charges are short ranged [16].

Finally we point out the delicate role played by the
choice of ensemble in this problem. Higgs and Joanny
[8] examine the behavior of unconstrained PAs in an an-
nealed approximation, and again find collapsed states. In
most cases annealed approximations give results that are
qualitatively, if not quantitatively, similar to the
quenched system. However, in this example, quenched
polymers are stretched while the annealed ensemble
yields compact states. This is because the annealing pro-
cedure automatically selects neutral polymers because of
their much more favorable electrostatic energy. Typical
members of the quenched ensemble are given negligible
weight due to the Coulomb energy of their excess charge.
As stated earlier these considerations are relevant to the
preparation conditions for the PA. In an organic environ-
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ment the monomers tend to form neutral PAs, while in an
ionic solvent, the screening of charges favors PAs with a
typical excess charge. These conclusions will hopefully be
verified by ongoing experiments [10].
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