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The energy cascade in both hydrodynamic and hydromagnetic Boussinesq convection is investigated at
large Rayleigh numbers, using a scalar model for turbulence. Depending on the relative importance of
direct and inverse transfer, either we observe classical Kolmogorov k spectra or, if there is a strong
inverse transfer of kinetic energy, we find a k ' spectrum for the temperature fluctuation and a k
spectrum for the kinetic energy (Bolgiano-Obukhov scaling). We derive dissipative cutoA' wave numbers
that are consistent with these spectra.

PACS numbers: 47.25.—c, 05.45.+b, 47.20.Tg

Recent experiments on convection at high Rayleigh
numbers [1] have indicated that the frequency spectrum
of the temperature fluctuation follows a power law with
an exponent close to —7/5. Using the Taylor hypothesis
this translates to a k i wave-number spectrum, which
significantly differs from the Kolmogorov k i spec-
trum. This discovery has triggered a number of theoreti-
cal investigations. A k spectrum for the temperature
fluctuation and a k "i spectrum for the kinetic energy
has been suggested by Bolgiano [2] and Obukhov [3] for
turbulence in a stably stratified medium. Procaccia and
Zeitak [4] found the same scaling also for the contrasting
case of convective turbulence, employing a dynamical
theory for the structure functions. However, Shraiman
and Siggia [5] argued that Bolgiano-Obukhov scaling is

inconsistent in this case and that the wave-number spec-
trum might actually be steeper than the frequency spec-
trum. Moreover, Castaing [6] demonstrated that the ex-
perimental result could also be fitted by a k i law if the
crossover from the inertial to the dissipative subrange is
included. Grossmann and Lohse [7] also presented ana-
lytical arguments and numerical simulations in favor of a
Kolmogorov spectrum. A more recent experiment [8]
seems again to confirm the —7/5 exponent, not only for
the frequency but also directly for the wave-number spec-
trum of the temperature fluctuation.

In this Letter we study a simple cascade model for
which we find both Kolmogorov and Bolgiano-Obukhov
scaling, depending on the details of the energy transfer.
This allows us to identify the physical mechanism respon-
sible for the occurrence of one or the other possible scal-
ing laws. In some cases we also include the effects of
magnetic fields relevant in the astrophysical context.

The range of length scales currently resolved in direct
simulations of three-dimensional turbulent hydrodynamic
and hydromagnetic convection [9,10] hardly exceeds 2 or-
ders of magnitude. Thus, inertial subranges for the ener-
gy spectra are short and the scaling exponents cannot be
determined to very high precision. This particular disad-
vantage is avoided in a highly idealized, one-dimensional,
scalar model for turbulence, where only interactions be-
tween wave numbers k from nearby shells are taken into

account (therefore also known as a "shell model" ). By
choosing an exponential spacing in k one can easily cover
many orders of magnitude, and thus very high Reynolds
and Rayleigh numbers are possible. The nonlinear in-
teractions in such models conserve certain quantities
which are also conserved by the original equations.

Scalar models have been used to study, in the nonmag-
netic case, cascade processes in turbulence [11],intermit-
tency corrections from Kolmogorov scaling [12], and
Obukhov-Corrsin scaling for the advection of a passive
scalar [13]. In the magnetic case, properties of hy-
dromagnetic turbulence and dynamo effect have been in-

vestigated [14,15]. In all these studies the flow has been
externally forced by an energy input at small wave num-
bers.

Forcing terms do not occur in the original Boussinesq
equations [16]. The flow results from the linear Ray-
leigh-Benard instability once the temperature gradient
between the top and the bottom of the fluid layer exceeds
a certain threshold. In a previously presented cascade
model for Boussinesq convection [7], where the boundary
condition for the temperature difference was difficult to
implement, an external forcing was assumed instead.
Since the nature of this forcing might be crucial [17],we
choose to work with the temperature fluctuation e, which
vanishes on perfectly conducting boundaries, but leads to
a new term in the e equation [16]. For large Rayleigh
numbers many modes are excited by the linear instability
and an external forcing becomes superfluous.

A related approach has been proposed by Legait [18],
who considered a scalar model for turbulent convection
using two coupled equations for the horizontal and verti-
cal vorticity. However, the temperature does not explicit-
ly enter and the buoyancy term is parametrized using an
expression for the growth rate as a function of wave num-
ber. Since we are particularly interested in the spectrum
for 6 we simultaneously solve model equations for 0 and
for the velocity. A scalar is used to represent the collec-
tive behavior of the velocity in a certain wave-number
band.

The set of equations governing hydromagnetic Bous-
sinesq convection in a layer of thickness d are [9,10,16]
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8 —qv' e= —u ve+pu z,

—vV u= —Vp' —u Vu+b Vb+ag8z, (2)

— —gV2 b = —u. Vb+ b Vu, (3)

with V u =V b 0. Here, u is the velocity, b is the mag-
netic field (normalized to have the same dimensions as
velocity), p' is the pressure fluctuation (including the
magnetic pressure) relative to the hydrostatic equilibrium
state with constant temperature gradient P, a is the
volume expansion coefficient, and g is gravity. g, v, and rt

denote thermal conductivity, kinematic viscosity, and

magnetic diff'usivity, respectively. To simplify the presen-
tation we consider impenetrable, thermally and magneti-
cally perfectly conducting boundaries and require

8=u„,=u», =u, =b„,=b», , =b, =0 on z =O, d, (4)

—,
' [u'+ b' —(ag/P)8']d'x

" g —,
' (u'+b') = g —,

' e'=gu„e„ (9)

is conserved.
We now introduce nondimensional variables by mea-

suring length in units of d, time in units of (aPg)
and 8 in units of Pd, i.e., we put a =P =g =1. We define
scalar variables u„,b„,and 8„ona one-dimensional k
mesh representing diAerent shells in wave-number space
with

k„=koh", n=0, 1, . . . , N —1,
where N is the total number of modes and ko is the wave

number corresponding to the largest possible scale in the
system. We put ko=1 and, in accordance with previous
scalar models, h =2. (For smaller values of h the spectra
are somewhat smoother, but the slope remains un-

changed. )
Analogously to (5) and (6) we require that

where commas denote derivatives.
In the inviscid case (1)-(4) lead to the following in-

tegral properties:

and

gu„b„=gb„e„
t

(10)

d
—,
' (u +b )d x= —,'8 d xa d

dt 4 P dt4
are satisfied by the inviscid equations.

For the evolution of 8„wewrite

and

ag„u,ed x (5) +gkn en =kn Z Cijun+ien+j +un .2

dt i,j —l, O, I

d
u bd x=ag b,ed x.dt" 4

Note that in this case the quantity

(6)
The coupling coefficients c;j are determined such that (9)
is satisfied. The equations for u„and b„can readily be
adopted from Ref. [14], where only the buoyancy term
8„hasto be included in the equation for u„.The com-
plete set of equations then reads

dt
+gk„e„=2k„(u„—8„——hu„e„y)+Bk„(u„8„——hu„+ 8„+)+u„, (12)

dt
+ vk„u„=Ak,tu, i

—b, ——h(u, u, + —b, b, +, )]+Bk„[—u„u„-,b„b„,—h(u„—+, b-„+ )]+e„,—

d
dt

+ rtk„b„=A k„h(u„+)b„—u„b„p) ) +Bk„(u„b„)—u„-)b„). — (14)

The coefficients A, B, A, and B quantify the relative im-

portance of inverse and direct transfer by the nonlinear
terms; see Ref. [14] for a detailed discussion. For exam-
ple, without magnetic fields and in the absence of the
buoyancy term 8, in (13), the case A=0 only causes
an inverse transfer toward smaller k via the term
—Bk„hu„+~.At first glance, a direct transfer via the
term Bk„u„u„—~ is also possible. However, this term can
only lead to an exponential growth of u„,if Bu„—~ &0.
Now, the other term —Bk„hu„+]gives a systematically
negative contribution to u„—~, regardless of the sign of u„.
Thus, the energy at higher wave numbers tends to decay,
which we also confirmed numerically.

Note that neither Bolgiano-Obukhov scaling nor Kol-

mogorov scaling corresponds to a fixed point of the invis-

cid equations. However, in the absence of the u„term
in (12), the Bolgiano-Obukhov scaling (u„~k„j,8„
ixk„'j,and b„=0)would correspond to an unstable
fixed point of the inviscid equations. If, in addition, the
buoyancy term 8„in (13) were also absent then Kolmo-

gorov scaling (8„~u„cx:b„~k„'j) would correspond to
an unstable fixed point (cf. Ref. [14]). We note further-
more that only in the magnetic case does the system of
equations satisfy the Liouville theorem [14].

By linearizing (12)-(14) we see that the state 8„
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=u„=b„=Obecomes unstable at Ra=Ra, =ko =1,
where Ra=(vg) ' corresponds to a Rayleigh number.
The nonmagnetic state b„0(but 8„,u„aO) becomes
linearly unstable (dynamo effect), if (Ahu„+I—Bu„-I)/
gk„&1 for some n. For the remainder we focus on large
Rayleigh numbers so that the solutions are chaotic. The
results presented below are for g =v=g.

We numerically integrated (12)-(14) using as initial
condition 8„u„b„Owith a small perturbation in u„
(and b„)for an intermediate value of n. We investigated
the solutions for various coefficients A, 8, A, and 8. Note
that one of these four coefficients can always be normal-
ized to unity. We mostly used A 0.01, 8=A =8=1.
(See Refs. [14,15] for a discussion of the case of small
A. ) We looked at the various time-averaged spec-
tra Ee (8„)/2k„,E» (u„)/2k„,Esr =(b„)/2k„,and
pushed the Rayleigh number as high as possible so that
we just resolve a dissipative subrange. Using N=30
modes we were able to reach Ra/Ra, =2.5x1025 in the
nonmagnetic case and 4& 10 in the magnetic case.

In the absence of magnetic fields we find an extended
inertial subrange with Eg 0- k " and Ee cx' k
(Bolgiano-Obukhov scaling); see Fig. l. It is interesting
to note that these spectra are obtained only after averag-
ing over many hundred time units. The instantaneous en-

ergy of modes in the inertial range ean vary over 6 orders
of magnitude.

The Bolgiano-Obukhov scaling is closely related to the
relative importance of inverse transfer of kinetic energy
measured by the ratio ~B/A ~. If this ratio is below some
critical value (around 0.4) we find classical Kolmogorov
scaling. The qualitative behavior does not seem to be
very sensitive to the exact values of A and 8, provided
there is a direct transfer of either kinetic energy or tem-
perature. (The case ~8/A

~

) 1 and ~8/A~ ) I leads to an
unlimited growth of energy at large scales. )

In the presence of magnetic fields we find for all com-

E» E»(ag, ee, k) =C»(ag) ee'k

Ee Ee(ag, &elk) Ce(ag) &e k

(15)

where ee yak„8„is the rate of 8 dissipation. (For the
ease depicted in Fig. 1 we obtain C» =O.S and Ce=2.)
On the other hand, if the cascade is governed by the
kinetic-energy dissipation then

E» -E»(&»,k) -C»&k"k

Ee Ee(e», ce,k ) =Cee» eek

EM EM(&» &N k) CM&» &Mk (i9)

where e» vgk„u„is the rate of viscous dissipation and
esr =yak„b„is the rate of Joule dissipation. (For the
case depicted in Fig. 2 we obtain C» = 2.5, Ce = 1.5, and

The dissipative cutoff wave numbers, k», ke (and kyar),
above which the dissipative subranges in E», Ee (and
Esr) begin, can be estimated using (15)-(19) to solve

e» 2v fII'k E»dk, and similarly for ke and ksr. This
yields

( s vC ) 5/4(ag) —l~ —I/2~/54 (20)

k -(-'gC ) ' '(ag) ' 'e' ' (2i)
Inconsistencies have been noted [5] if ke [see (lie) in

binations of A, 8, A, and 8, Kolmogorov k / spectra
for Ee, E», and Esr, see Fig. 2. Note that the famous
k / spectrum [19] is only to be expected when nonlocal
interactions via the Alfven effect are taken into account
[i4].

From dimensional arguments one can see that the
different scaling behaviors crucially depend on the role of
the buoyancy term ag8 in determining the energy cas-
cade [5,7]. If the coefficient ag is important for the cas-
cade then the spectra must have the form
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FIG. 1. Spectra for the nonmagnetic case with Ra/Ra,
4x 1024. The inset shows that the local slope dlnE/dink is

around —
& for Ee and around —'5 for E» (horizontal dash-

dotted lines). The two vertical bars on the k axis mark dissipa-
tive cutoff wave numbers.

FIG. 2. Spectra for the magnetic case with Ra/Ra, 10
The inset shows that the local slope for all three spectra varies
around —

3 . The three vertical bars on the k axis mark dissi-
pative cutoff wave numbers.
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FIG. 3. Sketch of transfer properties in the case of Bol-
giano-Obukhov scaling. The symbol ag refers to the exchange
of energy via buoyancy work.

It is well known [21] that in two-dimensional tur-
bulence strong inverse transfers result from pairing of
large energetic eddies leading ultimately to a large-scale
vortex occupying the entire system. This appears to be
similar to the large scale Aow observed in high-Rayleigh-
number convection [22]. This fiow corresponds to a large
scale two-dimensional vortex. Although we expect con-
vection to be truly three dimensional we thus do see that
this cannot be the case at large scales. Therefore, the
question whether or not Bolgiano-Obukhov scaling occurs
seems to be intimately related to possible inverse transfers
associated with this large scale flow.

I would like to thank Mogens H. Jensen and Alain
Vincent for encouragement and many enlightening dis-
cussions on this topic. Part of this work was carried out
at CERF AC S (Tou louse) .

Ref. [5]] (instead of ktr) was used to estimate the
kinetic-energy dissipation. Note that the use of Eq. (20)
automatically avoids this problem. The cutoff for the
spectra (17)-(19) has the well-known form ke=[Ee/
(6gCe) ] 'l (and analogously for lt and M).

In Fig. 3 we illustrate the transfer properties for which
Bolgiano-Obukhov scaling can be expected. If, for some
reason, an inverse transfer of kinetic energy is very strong
then the energy will dissipate via e dissipation. There-
fore the coupling coefficient ag, which regulates the in-
teraction between u and 8, becomes important in (15)
and (16). However, in the magnetic case equipartition
(b„=+ u„)is rapidly achieved and a direct transfer via

b„becomes possible [14], leading to Kolmogorov scaling.
Because of the limitations of this scalar model we can-

not claim that Bolgiano-Obukhov scaling will necessarily
occur in nature. The aim of this Letter is rather to
present evidence that Bolgiano-Obukhov scaling might be
closely connected to a strong inverse transfer of kinetic
energy. In fact, we find that Bolgiano-Obukhov scaling
disappears for various modifications to this model if, for
example, complex variables are used or if interactions be-
tween horizontal and vertical vorticity modes are included
[18]. However, in these cases inverse transfers turn out
to be weak. When the interactions with next-nearest
neighbors are included according to Refs. [12,13] there is
an unbounded growth of the velocity at small k and the
instantaneous spectra are typically of the Kolmogorov
type. However, if next-nearest-neighbor interactions are
included using terms of the form k„(u„u„—q

—h u„~q)
we do obtain a statistically steady state with Bolgiano-
Obukhov scaling. Thus, nonlocality in k space [20] can
be crucial, depending on which kind of wave-number in-
teractions are included. Indeed, the results presented
here are model dependent and Bolgiano-Obukhov scaling
is found only in special cases where inverse transfers are
sufficiently strong and where the buoyancy term ag plays
an important role for the energy transfer.
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