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We present an experimental study of thermal plumes growing in Hele-Shaw cells which shows the ex-

istence of new objects, analogous to Saff'man-Taylor fingers, for which the thermal boundary layer plays
the role of the interface. The theoretical analysis reveals the underlying selection mechanism, which is

provided by heat diAusion.

PACS numbers: 47.10.+g, 03.40.6c, 6S.10.—m

These last years, much efl'ort has been devoted to the

study of interface dynamics problems, such as viscous

fingering [1,2], crystal growth [3], flame propagation [4],
and electrolytic deposition [5]; despite the diversity of the

situations, the questions of pattern stability and selection
have received uniform theoretical treatment, and some of
them have been reasonably solved, at least in the simplest
cases [2,3]. The purpose of this Letter is to show, for the
first time, that a similar approach also applies for the
problem of determining the shapes of thermal boundary
layers. Although thermal plumes have been studied ex-
tensively in the past [6], interest in the subject was re-
vived recently because of their relevance to turbulence [7]
and geophysics [8]. However, here we regard these struc-
tures from the point of view of pattern formation.

The particular problem that we investigate presently is

hot fluid displacing colder fluid in a vertical Hele-Shaw
channel. The latter is formed by clamping together two
4-mm-thick Plexiglas plates, separated by Plexiglas
spacers; channels of different aspect ratios have been
studied, but most of the results presented herein have

been obtained on a cell of width w=3.00~0.01 cm,
thickness b =2.35+ 0.05 mm, and length 32 cm. A —,

' -W

resistance, placed inside the channel about 1 cm above
the lower end, serves as a heater to produce the thermal
plumes. Heater lengths considered in this study range
from 1 to 3 cm. The whole ensemble is immersed verti-
cally in a glass vessel filled with the working fluid. The
ends of the Hele-Shaw cell are left open, in free contact
with the fluid reservoir of the vessel. The fluids which we

use are ~ater and silicone oils. %e visualize the rising
warm front by means of a shadowgraph technique, em-

ploying a point source of white light, an 8 cm, f=50 cm
lens, and a TV camera.

If we turn on a localized heater inside a fluid initially
at rest and far from any walls, the hot fluid rises in a
column surmounted by a wider cap, forming a three-
dimensional thermal plume; such an object resembles a
mushroom and has an axisymmetric structure. With a
constant power input at the heater, the cap rises at con-
stant velocity, while its lateral size grows with the square
root of time; its shape is well approximated, at all in-
stants, by a Rankine fairing [9]. In a Hele-Shaw cell,
provided the heater is small compared to the channel

width, we initially form a thermal plume which expands
rapidly, just like in the infinite-geometry case. At later
times a different regime sets in, and the plume transforms
into a "finger, " similar to those formed by the interface
between two immiscible fluids in a Hele-Shaw cell [1].
Figure 1 is a shadowgraph of such a finger, of width
A, =0.56 (relative to the channel size), mo~ing at 1 cm/s;
in the present series of experiments, the finger velocity is

not strictly constant, presumably on account of the
thermal losses, but the corresponding decrease is so slow
that we can regard the plume as quasistationary. In Fig.
1, the boundary between the hot and cold fluid is the dark
region just inside the bright line. Similarities with the
Saffman-Taylor (ST) fingers are striking: The shape of
the front agrees well with the solutions found by Safl'man

and Taylor [1],as shown in Fig. 2; in contrast, a fit with a
Rankine shape (the form of the free plume) would be no-

ticeably worse. Concerning the finger tail, we can see
that it does not remain asymptotically parallel to the la-
teral walls, but smoothly bends towards the center; inside
the finger there is a recirculating flow which maintains a
sharp temperature drop at the "interface, " that is, which
sustains the boundary layer.

In Fig. 3, we present a plot of X versus Peclet number
Pe=Uw/ir, where U is the velocity of the finger, w the
width of the cell, and ic the thermal diffusivity (the intro-

FIG. 1. Shadowgraph picture of a thermal plume gro~ing in

a Hele Shaw cell 3 cm wide, 2 35 mm thick; Pe =3160,
A, =0.56. The dark regions on the sides are the lateral walls of
the cell.
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FIG. 2. Comparison between the plume of Fig. I (circles)
and the SaA'man-Taylor analytical solution (line) with the same

FIG. 3. Relative widths of plumes, plotted as a function of
Peclet number, for two different oils, in the same channel
(b -2.35 mm and w 3 cm). k: 20-cS oil; ~: 2-cS oil.

duction of this quantity will be justified later). The mea-
surements of Fig. 3 are performed far from the heater, at
distances of typically 6 cell widths from it, above which A,

is found approximately constant. The points at the lowest
Peclet numbers are obtained in 20-cS oil, and the others
in 2-cS oil, the range of Peclet number being covered by
varying U [1 centistoke (cS) =10 cm /s]. The depen-
dence of X with Peclet number is found to be small in any
case. The asymptotic limit at large Peclet number, which
is A, =0.55, is slightly above the width of ST fingers; such
a difference may be related to the finite thickness of the
cell. Additional data, obtained in cells of different aspect
ratios, tend to support this conclusion.

In order to establish more precisely the connection with
the ST problem, we investigate the effect of time-inde-
pendent perturbations on the thermal fingers. We find

that the phenomenology is remarkably close to the one
observed in viscous fingering [10]: Perturbations always
lead to fingers with dramatically smaller sizes. We
present two examples: In Fig. 4(a) the plume was started
only 10 s after the heating to the preceding plume was

switched off; the stem of the previous plume is still dimly
visible in the picture. This provides a perturbation of
both the initial temperature and velocity fields, and the
result is a finger with X ( —, (this plume is obtained with

the same power input as the one in Fig. 1). In Fig. 4(b) a
170-pm-thick metallic wire is stretched inside the chan-
nel. This again leads to X & 2, moreover, the finger is

displaced asymmetrically inside the channel so as to ac-
commodate the wire at a particular position along the in-

terface: This phenomenon was also observed in viscous
fingering experiments [10]. In the case of the plume, the
particular position corresponds to the insertion of the
stem onto the cap, as is evident from the picture.

We now consider the theoretical problem, for which we

try to develop a strategy similar to the Saffman-Taylor
problem. However, in the present case, the interface be-

tween the two fluids is diffuse, and, in order to make the
analogy explicit, one needs to transform, in a consistent
way, the thermal boundary layer into a sharp interface.
We do this using the "phase field model" [11];briefly, it

consists in dividing the physical space into three regions:
the diffuse interface, and the space on each side of it.
The relevant fields are expanded in powers of a small pa-

(a)

(b)

FIG. 4. Perturbed Saffman-Taylor plumes: (a) using the

stem of a preceding plume (k 0.39) and (b) with a wire, 170

pm in diameter (X 0.46).
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where x,y are the coordinates (the y axis being directed
along the mean flow), and a=(b /12p)gpa'/U (here p,
p, and a' are respectively the viscosity, density, and
thermal expansion coefficient of the fluid, and g is the ac-
celeration of gravity). In (1), lengths, velocities, and
temperatures are rescaled by using w, U, and Ti —T2.
Note that in the experiments described above, we have
a- l.

In the spirit of the phase field model, we further add to
the advection diffusion equation a forcing term F(8),
whose role is to force the temperature 8(x,y) to have two
distinct, constant values outside the boundary layer, 1

and —1, respectively, inside and outside the finger. The
equation for 8(x,y) is then (in the frame moving with the
finger)

Pe '58 —v V8+PeF(8) =0, (2)

where v is the dimensionless velocity field and Pe =Uw/x.
is the Peclet number, which is found to be large in the ex-
periment (see Fig. 3). A standard choice for F is
F(8)-8(1 —8 ), which leads to kink solutions for 8 [11];
we restrict ourselves to this choice, which turns out to be
noncrucial for our conclusions [12]. In the phase field

model, F is related to the free energy of the system; in our
case, it models the effect of the recirculating flow, inside
the finger, which sustains the boundary layer. The use of
(2) rather than the complete advection diffusion equation
is the main point of this model. It allows us to impose the
structure of the thermal field, without solving the full
equations of the problem within the boundary layer and
inside the plume. Concerning the boundary conditions,
they are + = ~ 2 along the walls and 0= ~ 1 far from
the interface. At this stage, there is no sharp interface
between the two fluids.

We now expand both fields 8 and qr inside and outside
the boundary layer, in terms of the small parameter
Pe '. At zeroth order, the boundary layer thickness is
zero, so that it reduces to a line of discontinuity I which

rameter (related to the interface thickness), and matched
for the different regions. The ensuing solvability condi-
tion gives the boundary conditions on the interface. To
apply this method, we introduce simplifying assumptions,
which are suggested by the experiment. We assume that
the system is two dimensional, the Bow is governed by
D'Arcy law (for the sake of simplicity, we take the viscos-

ity constant), and we consider that the temperatures, far
away from the boundary layer, are steady and homogene-
ous, with values Ti inside the finger, and T2 outside (with

Ti ) Ti). We now seek steady-state solutions where the
boundary layer propagates at constant velocity U; we in-

troduce the stream function +(x,y) which, in a frame
moving at velocity U, is related to the thermal field

8(x,y) by D'Arcy law with gravity, which reads [6]

h, 'P =a 8

8„+F(8)=0, (4)

where r is the stretched coordinate normal to I, using
Pe ' as the characteristic length. At the next order, one
gets a linear nonhomogeneous differential equation of
second order, involving 8, and y. The linear operator is

self-adjoint, and one can write a solvability condition [11]
which ensures the convergence of the expansion. By ap-
plying this constraint, and matching the inner and outer
expansions, one finally gets the boundary conditions for
the flow outside the finger:

t1 1 dr (1+aC cosr ),
8n Pe Bs

(5)

where v is the angle between the normal at the interface
and the vertical y axis, n is the coordinate normal to the
interface, s is the arclength, p is the velocity potential,
and C is a positive constant of order 1 which depends on
the particular form of F. Concerning the velocity poten-
tial p, one has continuity across the interface. The right-
hand side of Eq. (5), which is proportional to the local
curvature Br/8s, represents the eff'ect of the thermal
diffusivity. It expresses the fact that fluid flow trajec-
tories cross the interface, in a way somewhat similar to
the viscous fingering with a film drained by the interface
[13]. In our case, this comes from the fact that isotherms
are not streamlines when the thermal diffusion is taken
into account. The present problem is therefore diff'erent

from ordinary Saffman-Taylor; however, we find that the
perturbation, represented in the right-hand side of Eq.
(5), also induces a selection. This has been checked both
numerically and analytically [14]; we present herein only
the results obtained analytically, leading to the following
estimates: When the quantity aC is smaller than 1, one
gets

k —05=a 'Pe

whereas in the opposite case we have

k —0.5=C i Pe

We thus obtain fingers close to one-half, which is in good
agreement with the experiment.

To summarize, we have revealed the existence of

is a streamline and an isotherm. In the fluid, 8 is either 1

or —1 so that one obtains the following equations for 0:
(3)

Therefore, one recovers exactly the problem of a
buoyancy-driven finger, with zero surface tension. The
solution to this problem was found by Saffman and Tay-
lor [1], in the form of a continuous set of solutions

pararnetrized by X,. At this stage, one thus obtains the
shape of the finger, but, as expected, one must go one or-
der beyond to find the selection mechanism. At the same
order, but within the boundary layer, one gets from Eq.
(2) the following equation for 8:
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SaAman-Taylor plumes, i.e., thermal plumes which have
the same form, size, and dynamics as Saffman-Taylor
fingers, and shown that the small parameter which leads
to shape selection is the thermal diffusivity.
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