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An investigation of the nonlinear dispersive equations of continuum mechanics reveals localized
standing-wave solutions that are domain walls between regions of different wave number. These states
can appear even when the dispersion law is a single-valued function of the wave number. In addition, we
calculate solutions for kinks in cutoff and noncutoff modes, as well as cutoff breather solitons.
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Experiments on continuous media have demonstrated
the existence of propagating envelope solitons [1,2], Scott
Russell-type solitons [3], as well as standing solitons such
as breathers [4] and kinks in cutoff modes [5]. These lo-
calized modes are described by equations that, in leading
order, are closely allied to the nonlinear Schrodinger
(NLS) and Korteweg-de Vries (KdV) equations [6].
The recent observation of domain walls [7] has motivated
us to investigate the general theory of modulated standing
waves in a continuous medium. We are especially in-
terested in the fact that the domain wall breaks parity as
well as translational invariance. We report below the
finding that the domain wall and noncutoff kinks are de-
scribed by a new set of modulational equations (i.e., not
the NLS, KdV, Toda, or sine-Gordon equations). Our
calculations are limited to nontopological soliton, local-
ized states.

We consider the general class of nonlinear dispersive
continuum mechanical systems that can be cast in the
form

pii+édp' =Gp'?, (1

where &¢ and G are linear isotropic differential operators
in V, i.e., are functions of V2 the subscript ¢ denotes
differentiation with respect to time. The equations of
motion for acoustic and optical phonons, the flexing
modes of plates and shells, the continuum limit of the
pendulum lattice, as well as many other systems can, to a
reasonable approximation, be written in form (1). Our
investigations will be limited to one space dimension plus
time. Even with this restriction, the results may have ap-
plications to information storage and to fiber optic com-
munication [8], and hopefully may also point the way to
generalizations in higher dimensions.

We seek solutions to (1) in a form that allows for the
modulations of both amplitude and wave number k =6,:

p'(x,1) =y(x,t)cos6(x,t)e ~*+c.c., )

where  is a constant (the frequency of the standing
wave being modulated), y and 6 are complex, and c.c.
denotes the complex conjugate of the preceding expres-
sion.

To derive approximate modulational equations of

motions for 8 and y, we assume that y=0(¢e), where
0< ek, and assume that time derivatives are small
compared with space derivatives. By substituting (2) into
(1) and equating the coefficients of sinf and cos@ sepa-
rately to zero (this is permissible when k ~ 1), we obtain

2ioy, =lwd(k) —0?*— 5 Gyl 1y — ¥ givx
_gkk[;—kx‘l’x"'%kxxll’]_%gkkkkxz(l’, 3)
2ioyd, +g'"%(g"y), =0, )

where the subscript x stands for differentiation with
respect to x, wo(k) is the dispersion relationship govern-
ing infinitesimal waves of constant k, and g(k) =dwé/dk.
We shall assume that wo is a monotonically increasing
function of k, so that g= 0. There is no significant loss
of generality here, for the issue we face is that of under-
standing how two modes of different wave number can be
in equilibrium, even when wq is a single-valued function
of k. We suppose that G is a constant (G); progress can
also be made, at a cost of greater complexity, for more
general G.

Equations (3) and (4) provide a description of how
smooth modulations of standing waves develop in space
and time. For a stationary state they imply

v=ylg/g1'"?, (5)
a+bkxx+%%kb—kx2=0, 6)

where y; and g, are real constants and

3{lw?— wd(k)1g(k) +9Gg | v |%/4}
[gk)]? ’

bk)=—g '/2d—2g m12 8)
dk? '
Consider now solutions in which k asymptotes to k + for
x— +oo, and in which k— k-« for x— —oo. From
(6), we see that a(k+w)=a(k-«)=0. For the kink
k +00 =k — o, but for the domain wall k +w#k — e [so that
in this case a(k) =0 must have multiple solutions]. The
restriction a(k +) =0 is a unification of two physical
conditions that are (1) at finite amplitude, the resonant
frequency shifts to @, where w?=wg(k) — ¥ G|y|? and

a(k)= @)
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(2) the amplitude and wave number must adjust so that
the flux of the adiabatic invariant (U/w)dw/dk, where U
is the energy density, vanishes in the steady state (5).

In the case of the domain wall, a direct integration of
(6) yields the key connection relation

£ ats 200 ak =0 ©)

A simple interpretation of (9) can be obtained by the
transformation (k,x)— (x,¢) which converts the solution
to (6) into the motion of a zero-energy particle of unit
mass in the potential

L {fkk_a(x)b 2(x)dx

V(k,k—-)=b—3/2(—ks“

- ;-bB/Z(k_)kf(k_)} , (0)

where k - is a reference value of k. Should this potential
have a maximum at some value of k (say, k —), then the
constant of integration can be chosen so that k,(k —) =0.
Since k?/dk =2k,,, it follows that ky,(k-)=a(k_)
=0, so that k— k- as x— —oo. When the potential
has a second maximum (at k4, say), then a particle
starting from rest at k — in the potential (10) will just

reach k4 if V(k4+,k-)=V(k-,k-), ie., if (9) holds.
This corresponds to a domain wall with k4 =k 4. If
V(k4,k-)>V(k-,k-), the particle returns to k .
This corresponds to a kink. In order for V to have a
maximum, at k=k_, say, it is necessary that g?
+ 5 G|lyl|%gx > 0. The above interpretation applies for
b > 0; a similar analysis can be carried out if b6 <0 but, if
b passes through zero, this simple picture breaks down.

The domain-wall profile can be calculated analytically
when the net change in k and ? are both small, i.e.,
when k'=k —k;=0(8) <1 and g =0(¢?), so that

g =ofll +eX(yik'+ vk 2+ y3k 3+ y3k'*+ - )],
(1)

where k| and @, =wo(k,) are constants. In this case, a

domain-wall solution exists in the form
k =k +Ak'tanh[DAk'(x — x¢)], (12)

where D =5—yfys/y3, provided that the dispersion
satisfies the constraint 2y = 7,73, or equivalently
d? _
787"
dk
Substitution of (11) into (5) and (2) yields the complete
solution

=0. (13)

k=k,

1/2
2 - ) . '
p'= i _a_)inl__w_ {1 ——}?'—Ak’tanh[DAk’(x—xo)]}sm{kﬂx—x0)+%lncosh[DAk (x—xo)]}. (14)
14
Figure 1 shows an example of a domain-wall solution |
given by this theory. can only be met when (13) is satisfied along with
The domain-wall solution to the nonlinear standing- 5
wave cguations has been obtaingd l?y r,equiring 3that thf: w—o =1¢ Yio) + yo0, DAk | |
expansion of a/b as a power series in k' be 0(8°). This 2
restriction is imposed by the connection relation (9) and " (15)
‘ ' — 2\/5 a)l(a)l )
=3 G '

-4 0 4 3
&£
FIG. 1. Snapshot of a standing domain wall between modes
of wavelength 2 for x— —oo and waves of wavelength 3 for
x— oo, This is a plot of p' given by (2), (5), and (11) for
x0=0, y1=y2, D=1, Ak'==/6, and k, =5x/6. The ordinate is
p'in units of % (—2/Gy2) ewi 7.
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The strong restriction (13) is not applicable to the
kinks. In this case one need only require that a/b

=0(8%). Setting now
}wll?}, (16)

2
_ 1 2] Yiwl 7173
W~ W= 7€

+nl|l—
272 '[ 273

we obtain the stationary solution

0=0(xo)+k (x —xq)
1/2
tanh[(Kk") 2(x —xo)],

+ a7

K
where
k=211 =27
4y (nys—rd)

The spatial phase shift between x = —o0 and x =+ is
2(k'/K)"?. When changes in k are O(1), it may be

(18)
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necessary to restore the term —0,2111 on the right-hand
side of (3).

In the two solutions just obtained, Ak’ and k' are free
parameters that characterize the discontinuity of the
domain wall and phase shift of the kink. Also, the scaling
of v (i.e., €) is independent of &, which scales the spatial
variations. Figure 2 shows a kink soliton given by this
theory.

The algebraic details of the solutions for a kink and for
a domain wall are given elsewhere [9], where time-
dependent solutions are also considered.

Turning now to possible physical realizations of non-
cutoff kinks, we first consider the pendulum lattice [7]
and optical phonons for which the dispersion law is
of the form w¢=wdo+ (wp — wdo)sin*(ka/2), where wp
=wo(ka=r). According to (8), b <O for this dispersion
law, and a necessary condition for a kink solution is
g2+ 5 G|y|%gx <0. This clearly excludes low-amplitude
kink solutions when g is O(1), and these systems cannot
possess standing noncutoff kinks described by (3) and (4)
unless |wp —wdol/wdo< 1. Similarly, 6 <0 for flexing
modes, but the dispersion law for flexing shells [1] has a
minimum at finite k. Near this wave number, g is small,
and again such a system may have localized states.

In the presence of damping and parametric drive, (1)
becomes

2.0 ’ n
—%t%—+a3§p'+2yp'cos2wt+ﬂ%%==Gp'3. (19)

—8 _4q 0 4 8

FIG. 2. Snapshot of a kink in a mode of wavelength 4. This
is a plot of p’ as given by (2), (5), and (15), for xo=0, 71 =73,
K=1, and k'=97%/64. To make the kink profiles more ap-
parent, two sets of points separated by half-wavelength intervals
are indicated, and the curves of constant phase joining these
points are shown dashed.

In the steady state (with 6 real), the right-hand side of
(3) is supplemented by the additional term yy* —iBwy.
The steady state is now characterized by a phase lag, S,
relative to the drive, where

sin2S = —wp/y, (20)

and a(k) in (7) must be replaced by

alk) = [g(O]2

3o?— wdk) + (2+ 202 VBg (k) +9Gg, | y1| /4]

21

When the dispersion law possesses a finite cutoff at long wavelengths, a solution of the form (2) exists for =0, so

that only the amplitude is modulated. In this case (1) gives

2ioy, =lwd(0) —w?—3G|y|*ly —cy,, (22)
where we have set

wf=wd©)+ck*+ - - . (23)
Equation (22) is a well-known NLS equation. It possesses a nonpropagating breather soliton for G > 0,

v 2[603(2();_ w_Z] ] lnsech{ [__wg(Oc)_z— o’ ] ]/z(x —Xxo) } , (24)
and a nonpropagating lower cutoff kink for G <0,

[ 02— wd0) | 0*=030) |
V=3¢ tanh{ [_2c2_— (x—xo)}. (25)

Our analysis of the modulational equations for stand-
ing waves leads us to the conclusion that such systems
can display a wealth of localized states. The solutions
presented here have the advantage of being analytic to-
gether with the disadvantage of not being the most gen-
eral solutions to (3) and (4). Indeed, the observations of
domain walls which prompted this research dealt with a

[

system for which (13) does not apply. We conclude that
the parameter space for these new localized states must
be richer than has emerged from our leading-order solu-
tions to (3) and (4).
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