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Ericson Fluctuations in the Chaotic Ionization of the Hydrogen Atom
in Crossed Magnetic and Electric Fields
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We report exact quantum calculations for the hydrogen atom in crossed magnetic and electric fields.

Employing the complex-coordinate-rotation method we are able to extend the calculations of eigenstates
far into the continuum region. Calculated photoionization cross sections are found to exhibit strong
Ericson fluctuations, a characteristic feature of chaotic scattering. This interpretation is supported by
classical trajectory calculations which reveal a fractal dependence of the classical ionization time on the
initial conditions.
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Highly excited states of atoms exposed to a uniform

magnetic field have proved, in recent years, ideal objects
in which to study —both theoretically and experimentally
—the novel quantum features that emerge in quantum

systems when the underlying classical system undergoes a

transition to chaos [I]. As a paradigm of a real nonse-

parable quantum system with a classically chaotic coun-

terpart, the hydrogen atom in a magnetic field, and, in

particular, its bound state spec-trum have been analyzed

extensively with respect to universal quantum signatures
of chaos, such as the changes in the statistics of the Auc-

tuations of energy-level densities from a Poissonian be-

havior to the behavior predicted by random-matrix theory

[2], or the appearance of long-range modulations in the

spectra that are related to classical periodic orbits [3].
By contrast, in this Letter we want to direct the attention
to a quantum signature of chaos that is to be expected in

the continuous part of the spectrum, viz. , fiuctuations in

quantal cross sections that can be associated with un-

bounded classical trajectories. This phe'nomenon was first

discovered many years ago in nuclear reaction physics by
Ericson [4], and an interpretation was given in terms of
random-matrix theory; the relation between these "Er-
icson" Auctuations and classical chaotic scattering was

elaborated by Bliimel and Smilansky [5], who demon-

strated the occurrence of Ericson fluctuations in a model

system. Revealing the existence of Ericson fluctuations in

the ionization cross section of atoms in external fields and

establishing a connection to classical chaotic orbits is the
central objective of this paper.

Continuum (i.e., positive-energy) spectra of Rydberg
atoms in uniform magnetic fields were computed recently

by Delande, Bommier, and Gay [6], who used the
complex-rotation method, and O'Mahony and Mota-
Furtado [7] and Watanabe and Komine [8], who took a

closed-coupling approach. Here we wish to go one step
further and look at the continuum spectrum of a system
slightly more complicated, namely, the hydrogen atom
under the combined action of a magnetic and a crossed
electric field. The motivation for doing so derives from
the fact that above-ionization-threshold spectra of atoms

in crossed fields are largely unexplored both experimen-
tally and theoretically: Experiments so far were restrict-
ed to states below threshold [9], or could only resolve
long-lived states above threshold [10], while theoretical
work was confined to either perturbative approaches
(weak fields) [11] or, in the nonperturbative regime, to
general discussions of the possible existence of a double-
minimum potential [12] and quasi-Penning resonances
[13]. Another reason for looking at the crossed-field
problem is that the electric field enhances ionization and
shifts the above-threshold region to energies which are
still theoretically feasible.

The Hamiltonian of a hydrogen atom in crossed uni-

form magnetic and electric fields reads [in atomic units,

y =B/(2. 35 x10 T),f=F/(5. 14x 10 V/cm)]

H = —,
'

p
—1/r + —,

'
yL, + —,

'
y (x +y ) +fx,

In contrast to the case of an atom in a single uniform

magnetic field (or parallel fields), the z component of the

angular momentum, L„ is no longer conserved for an

atom in crossed fields, and thus one deals with a system

nonintegrable in three degrees of freedom, the only

remaining constants of motion being the total energy, F.,
and the parity with respect to the (z =0) plane, x, .

To account for continuum states we adopted the

complex-rotation method [14] (replacement of r with re'

in the Hamiltonian and wave functions), which proved so

efficient in determining the positive-energy spectrum of
the hydrogen atom in a magnetic field [6]. By this trans-

formation, hidden resonances of the Hamiltonian in the

continuum, associated with complex eigenvalues, are ex-

posed, while the resonance wave functions are described

by L2-integrable basis functions, with complex argu-

ments. We worked with a Sturmian-type basis set and

used semiparabolical coordinates [15]. In this way, the

complex-rotated Schrodinger equation is transformed to a

generalized complex symmetric eigenvalue problem with

sparse matrices and complex energy eigenvalues E. We

solved the eigenvalue problem numerically by extending

the Lanczos algorithm [16] to complex matrices. Note

that, since L, is no longer a good quantum number, the

586 1992 The American Physical Society



VOLUME 69, NUMBER 4 PHYSICAL REVIEW LETTERS 27 JULY 1992

~(E) =4~a(E E,)lm g—(~olD I ~, (8)&'

EJ (8) E-(2)

basis set cannot be restricted to states with fixed magnetic
quantum number m as is the case for an atom in a pure
magnetic field. The crossed-field atom, therefore, re-
quires considerably enlarged basis sets in comparable
energy-field regions.

We performed numerical calculations for B =21 T,
F=5140 V/cm, with a basis set of up to 19600 states,
which, for these field strengths, proved sufficient to
guarantee convergence of the results for the bound states,
long-lived resonances, and the cross section for dipole
transitions. Continuum states of course depend, in gen-
eral, on the complex rotation angle 8. For the purpose of
the present investigation we chose a relatively strong
magnetic field to keep the basis sizes feasible on small

machines (the extension to laboratory field strengths us-

ing larger basis sizes is straightforward). The complex
rotation angle we used was 8=0.08. Figure l(a) shows

the results for the complex energy eigenvalues obtained at
these field strengths. Below the Stark saddle-point ener-

gy, E,~ —2Jf a.u. = —438.8 cm ', ionization is classi-
cally forbidden and quantum states are evidently restrict-
ed to the real energy axis with zero (or negligibly small)
imaginary parts. Above the saddle point, more and more
continuum states are rotated towards negative imaginary
parts, revealing a lot of hidden resonances near the real
axis. The energy widths I of these resonances are given

by I = —2ImE.
With the energy eigenvalues and eigenvectors at hand

it is a straightforward task to evaluate the cross section
for dipole transitions, which can be written in the form
[17]

where %0 is the initial state with energy En, and %'~(8)
are final states at (complex) energies E~(8); D denotes
the dipole operator for some given polarization, and

Q ]37 is the fine-structure constant. Though the ener-

gies E~ (8) .and the (complex) dipole matrix elements
(On~D ~%'J(8)) may, in general, depend on the complex ro-
tation angle 8, the cross section cr(E) is not affected by
this rotation angle in converged spectra. As an example
we considered dipole transitions of the crossed-field hy-
drogen atom from the initial state ~2p0) to final states
with even z parity, excited by coherent light with linear
polarization parallel to the direction of the magnetic field.
The spectrum resulting at B =21 T, F=5140 V/cm is
shown in Fig. 1(b). For graphical purposes, infinite or
very large values of the photoionization cross section re-
sulting from states with I &0.04 cm ' have been drawn
with the widths of these states arbitrarily set to I"=0.04
cm . It is evident from Fig. 1(b) that up to energies
even well above the Stark saddle point the photoioniza-
tion spectrum is dominated by sharp lines, i.e., long-lived
states. Below E= —280 cm ', almost no continuum
states are excited, which may be interpreted in terms of a
stabilizing effect of the magnetic field on states above the
Stark saddle energy. At higher energies (E& —280
cm ) the continuum is growing, but in contrast to the
Stark effect [18] it is not a smooth function of the energy,
but exhibits irregular fluctuations. Figure 2(a) shows
this part of the spectrum on a larger scale. To make the
fluctuations in the continuum signal stand out, we have
plotted the part of the spectrum which results from broad
resonances with ImE & —0. 1 cm '

by the solid curve.
The dashed curve represents the complete photoionization
cross section. In general the peaks of the fluctuations do
not belong to a single resonance, but result from the in-
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FIG. I. Spectra of the hydrogen atom in a crossed magnetic
and electric field with B =21 T, F=5140 Vlcm. (a) Positions
of resonances with even z parity in the complex energy plane.
(b) Photoionization cross section (in a$) for excitation of the
J2p01 state using light with linear polarization parallel to the
magnetic field axis. (SP: position of the Stark saddle point).
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FIG. 2. (a) Enlargement of Fig. 1(b) in the energy range—280 to —220 cm '. The solid curve is the cross section pro-

duced by all resonances with ImE( —0.1 cm '; the dashed
curve represents the complete cross section including the long-
lived states. (b) Autocorrelation function calculated from the
above spectrum. The dashed curve is a Lorentz curve fitted
with a coherence width of I 0.37 cm
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terference of many states.
Fluctuations of this type were first discussed by Ericson

for nuclear cross sections in the continuum region [4],
and were experimentally observed in these systems [19].
The basic ideas of Ericson are the following: (a) If many
resonances with widths exceeding the mean level spacing
are excited coherently and (b) if the phases of these reso-
nances are distributed randomly, they produce statistical
fluctuations in the cross section as a function of energy.
It was shown recently that Ericson fluctuations also ap-
pear in simple quantum systems with few degrees of free-
dom, if the corresponding classical scattering system
possesses irregular dynamics ("chaotic scattering") [5].

According to Ericson, the lluctuations provide informa-
tion on the lifetime of the excited compound nucleus
when analyzed via the autocorrelation function

r E2
C(s) =

z „~ [rr(E+e) —o][o(E) rrldE—, (3)

where 0 is the average cross section in the energy interval

E] ~ E & Eq under consideration. For small displace-
ments e the autocorrelation function assumes a Lorentzi-
an shape C(s) —(I +e ) ', where I is the coherence

energy (- reciprocal lifetime) of the intermediate state.
We have analyzed the continuum signal of the crossed-
field atom [solid curve in Fig. 2(a)] accordingly. The au-

tocorrelation function is shown in Fig. 2(b). It can
indeed be fitted for small e by a Lorentzian shape, with

1 =0.37 cm ', corresponding to a lifetime of T;,„
=590000 a.u. This is about 8 times the cyclotron time

of a free electron in a magnetic field B =21 T. We have

deliberately extended the horizontal scale in Fig. 2(b) to

larger values of s, where the autocorrelation function os-

cillates around zero, to demonstrate the striking similari-

ty between the atomic autocorrelation function and the

nuclear autocorrelation function determined in Ref. [19].
While the phenomenon there occurred on energy scales of
tens of keV, here we can observe it on scales of 10 ' Ry.
This evidently points to the universality of the phenom-

enon. Whether or not physical importance can be attri-
buted to the oscillations in the autocorrelation function

remains to be investigated.
To confirm our interpretation of the structures in the

photoionization cross section of the cross-field atom in

terms of Ericson fluctuations we also analyzed the classi-

cal dynamics of the system. Of course, the crossed-field
atom is not a generic scattering system, with an asymp-

totically free incoming and outgoing electron. Rather,
the electron is located very close to the nucleus at the mo-

ment of excitation (t =0), and the classical trajectories
do not depend on certain impact parameters, as for

scattering, but on the starting direction of the electron,
parametrized, e.g. , by spherical coordinate angles 0 and

The ensuing motion of the electron is in general very

complicated due to the nonintegrable nature of the Ham-
iltonian (1), but for ionizing trajectories the Coulomb po-
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I'lG. 3. Classical ionization time (in y
' a.u. ) of an electron

in the crossed-field atom starting at the nucleus in the (z=0)
plane with azimuth p for scaled energy E = —0.6 and scaled

field strength F =0.25 in successively smaller p intervals. The
fractal structure is evident from the enlargements.

tential can be neglected as r ~, and asymptotically we

have free motion along the z axis and a cycloidal motion
in the (x,y) plane [12(a)], with the center of the cycloid
moving parallel to the y axis according to y(r) = —(r
—T;„)F/8 Fi.tting ionizing trajectories r(r) with this

asymptotic motion, one can interpret T;,„as the classical
ionization time, depending on the starting angles 6 and p.
As an example, Fig. 3 shows this dependence in the
(z =0) plane (0 =90') at scaled energy E =Ey
= —0.6 and scaled field strength F=fy 7 =0.25, cor-
responding to E = —260 cm ', F = 5140 V/cm at
8 =21 T. For p & 120' and p & 240 the ionization time

grows rapidly, indicating the presence of bounded or ex-

tremely long-lived trajectories. By contrast, in the inter-

val 120' & p & 240' lFig. 3(a)] the classical ionization
time exhibits large fluctuations in some regions.
Magnifications of parts of these regions [Figs. 3(b) and

3(c)] reveal the existence of fractal structures in the clas-
sical ionization time as a function of the starting angle p.
This fractal dependence is not restricted to the (z=0)
plane; we have observed similar structures as a function
of 6 as well. The features strikingly resemble fractal
structures seen in model systems of chaotic scattering
[5,20].

To distinguish between photoionization and scattering
problems we adopt the term "chaotic ionization" in the
case of the crossed-field atom, but the connection to
chaotic scattering is quite obvious. There is also a deep
connection between the classically chaotic ionization of
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the crossed-field atoms and the observation of Ericson
fluctuations in the quantum mechanically calculated pho-
toionization cross section. If we change the ratio of the
external field strengths a decrease of fractal structures in

the classical ionization time is accompanied by a decrease
of fluctuations in the continuum part of the photoioniza-
tion cross section.

In conclusion, we have performed exact quantum-
mechanical calculations for the hydrogen atom in crossed
magnetic and electric fields by numerical diagonalization
of the Hamiltonian in a complete Sturmian-type basis set.
Using complex rotation we could extend the calculations
to energies far above the Stark saddle point. The contin-
uum part of the photoionization cross section exhibits
Ericson fluctuations in energy-field-strength regions
where classical trajectory calculations point to chaotic
ionization. The features resemble structures observed in

chaotic scattering systems. The universality of Ericson
fluctuations in quantum systems with classical chaotic
counterparts is thus strongly supported by our investiga-
tions in a real quantum system with few degrees of free-
dom.

This work was supported in part by Deutsche
Forschungsgemeinschaft.
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