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Integrable systems related to the Korteweg-de Vries (KdV) equation are shown to be associated with

the dynamics of vortex patches in ideal two-dimensional fluids. This connection is based on a truncation
of the exact contour dynamics analogous to the "localized induction approximation" which relates the
nonlinear Schrodinger equation to the motion of a vortex filament. Single-soliton solutions of the period-
ic modified KdV problem correspond to uniformly rotating shapes which approximate the Kirchoff el-

lipse and known generalizations. A simple geometrical interpretation of the dual Poisson bracket struc-
ture of the modified KdV hierarchies is given.

PACS numbers: 03.40.Gc, 02.40.+m, 11.10.Lm, 68.10.—m

tit(s, t) =tc(s, t)exp i„ds'r(s', t) (2)

Within this local approximation, (1) embodies the motion
of a point r(s, t) on the curve in the form

r, =Un+ Vb+ Wt, (3)

where the tangent, normal, and binormal vectors t, n, and
b comprise the Frenet-Serret triad and the velocity func-
tions in the local approximation are V=~ and U=W=O.
Unlike Euler's equation, the NLS is known to be an in-

tegrable system with an infinite number of conserved
quantities [2].

The existence of other, but more formal, connections
between integrable systems and Eulerian hydrodynamics
has been known for some time in the context of the
Korteweg-de Vries (KdV) equation, whose Poisson
bracket structure [3] is similar to that of Euler's equation

One of the more remarkable results in the mathemati-
cal physics of Hamiltonian systems is that the nonlinear
Schrodinger (NLS) equation,

iv =-v, —
l lwl'v,

describes the motion of a nonstretching vortex filament

moving in three dimensions under a local approximation
to Euler's equation of inviscid hydrodynamics [1]. Here,
the complex quantity tit(s, t) is given by the curvature
tc(s, t) and torsion r(s, t) of the curve at arclength posi-
tion s and time t as

[4,5]. Yet, the relation between KdV dynamics and the
actual motion of an inviscid, incompressible fluid has
remained unclear. In this regard, however, a recent study
[6] has noted the equivalence of the modified Korte-
weg-de Vries (mKdV) hierarchy and a certain class of
local dynamics of closed curves in the plane and pointed
out two intriguing connections with t~o-dimensional Eu-
lerian flows: (i) conservation of enclosed area, consistent
with incompressibility, and (ii) conservation of circula-
tion, consistent with the Kelvin circulation theorem.

Here we show that the connection between KdV dy-

namics and Euler flows in two dimensions parallels that
involving the NLS in three dimensions; i.e., it is through
a local approximation. The elementary distribution of
vorticity of interest in two dimensions is a vortex patch
[7], a bounded region of constant vorticity surrounded by
irrotational fluid. Starting from the exact nonlocal evolu-

tion equation for the boundary of such a domain [II] we

find that within a local approximation the boundary evo-

lution coincides with that which was earlier shown [6] to
be equivalent to the KdV dynamics. The curve motion
has a general form like the space curve described in Eq.
(3), but with motion only in the normal and tangential
directions,

r, =Un+ Wt, (4)
where now U =v, and W= —

2 ~ . The curvature then

evolves according to the modified KdV equation,

(s)
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which is integrable.
An alternative derivation of these results begins with

the Hamiltonian formulation of ideal hydrodynamics.
For a vortex patch, the Hamiltonian 'P. can be expressed
as a functional of the patch boundary r(s), with a long-

range coupling between tangent vectors. This allows the
dynamics to be written in a simple variational form

truncated with a cutoff A at s'=s ~ A/2, allowing the in-

tegration to be done term by term. The dynamics may
then be written in the form (4) where the normal and

tangential velocities are

6S
n r, =6,, n.

6r

A local approximation like that described above leads to
an expansion of the Hamiltonian in powers of the curva-
ture and its derivatives in the form

( )
cop ([d, I

fr(s, t) —r(s', t) I -(, )
2z' 4 (8)

The arbitrary parameter ro does not aAect the dynamics
because the integral of the tangent vector is zero for a
closed curve. In the localized induction approximation
we expand the terms in the integrand up to quadratic or-
der in powers of h, =s' —s, and use the Frenet-Serret
equations, t, = —xn, and n, =at, to obtain

r(s') =r(s)+&t(s) —
—,
' W'ten(s)+

and likewise for t(s', t). The integral over s' in (8) is then

'h' =(II)ds(a+hie +c«+die,'-+ ) .

The coefFicients a, b, etc. , depend on some (arbitrary)
large-scale cutoA in the truncation scheme. These
leading-order terms are in fact equivalent to the Hamil-
tonians of the first few members of the mKdV hierarchy.
Moreover, the existence of a dual Poisson bracket struc-
ture [9] to the mKdV dynamics follows from the possibil-

ity of viewing these and the successive mkdV Hamiltoni-
ans as functionals of r(s), as in Eq. (6) above, or of' «(s).
Note that the first two energies in the expansion (7) de-

scribe a contour endowed with surface tension [10] and

elasticity [11,12]. The single soliton so-lutions of the
variational dynamics (6) are extrema of these energies
subject to constraints of fixed length and/or area [13]. In
the vortical fluid interpretation, such solutions are ana-

logs of uniformly rotating vortex patches, the KirchoA el-

lipse, and the "V states" of Deem and Zabusky [14].
Finally, we show that when the dynamics are recast in

terms of the position of' the boundary in the complex
plane, z(s, t) =x(s, t)+iy(s, t), a number of conservation
laws and invariance properties arise quite naturally as
counterparts of those of exact two-dimensional Eulerian
dynamics. In particular, the appearance of the Schwarzi-
an derivative [IS,16] of z(s, t) in the dynamics leads

directly to the SL(2,C) invariance of the motion.
Contour dynamics for iortex patches. —As first de-

rived by Zabusky and coworkers [8], a point on the
boundary of a vortex patch with vorticity ~~ moves with

velocity

where the coefficients A„(A) and 8„(A) are elementary
integrals [17].

The coeNcients A„and B„ for n odd are zero, by sym-

metry; those for n even do not require the introduction of'

a small-scale cutoff to remain finite, in contrast to the
vortex line problem [18]. The parameter ro only affects
the time scale of the motion, but it is convenient to choose
it such that the condition W, = —KU is satisfied, as this is

the gauge in which the arclength parametrization is time
independent. A Galilean transformation removes the
term Aii in W. The modified KdV dynamics in (5) fol-

lows from the general relation [6] between curvature evo-

lution and the normal velocity in this gauge,

Hamiltonian formulation In i.n—viscid fluid dynamics,
the Hamiltonian i'Y is simply the kinetic energy; in two
dimensions it may be expressed as a functional of the vor-

ticity to(r) as

IF, G] = d r'co(r') V' x V'
aJ

The vorticity evolution m, = —v Vco follows from this
and the relation ift(r) =6/f/6co.

We now observe that for a region of constant vorticity,
the Hamiltonian can be reexpressed as a functional of the
boundary shape by repeated application of the divergence
theorem,

&p[r] = —
—,
' topIf~dsII~ds't(s) t(s')e(R), (12)

where R =r(s) —r(s') and &b(() =g In(~g~/ero) Ex-.
panding the integrand for s' near s as in the local approx-
imation to the contour dynamics, and performing those

integrals in the same manner leads to the curvature ex-

pansion for 'iV given in Eq. (7).
F'or the case of a vortex patch, it is not necessary to

consider arbitrary functional variations of the vorticity,

'h'[co] = —,
' d r„d r' -(tor)to(r')Q(r, r') . (10)

Here, Q(r, r') =In(~r —r'~/rid) is the Green's function for
the Poisson equation V y= —~ obeyed by the stream
function y. The time evolution of the vorticity, or indeed

any f'unction f(to) follows from the Hamiltonian as

f, = If, '/l] where the Poisson bracket of two functions of

the vorticity is defined by [4,5]
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but only those which preserve the piecewise constancy of
co. These, in turn, are associated with motion of the

boundary normal to itself, suggesting the identification

6
Geo(r)

1 .()
cop Br(s)

'

[F,G}=— ds' n(s'), tl, n(s')
Sr s' Sr s' (is)

This is indeed very similar to the KdV Poisson bracket
[3-5]. If we set F =r(s, t) and G ='S, the we recover the
boundary dynamics in Eq. (6) [17].

The dynamics generated by successive terms in the cur-
vature expansion of P in (7) leads to the first few

members of the mKdV hierarchy. That is, P =acids
gives U =are„associated with the ordinar mKdV equa-
tion. The elasticity Hamiltonian P =b ds rc leads to
U=2b(tc. ..+ —', tc tc, ), which gives the third member of
the mKdV hierarchy [6]. By suitably tuning the coefli-
cients c and d in (7) (by choice of rp), the next member
is also found.

While each of these Hamiltonians has been viewed as a
functional of the contour r(s), the vector r(s) itself does
not appear explicitly, so they may be considered function-
als of x alone. Indeed, it is known [9] that the mKdV
equations may be written as

One may verify that this functional derivative applied to
the boundary Hamiltonian (12) generates the correct
stream function for the patch,

ly(r) =co&&~ds'[r r(s')] x t($') ill [~ r r($') ~/er p] . (14)

Returning to the Poisson bracket (11) and integrating by

parts, we see the step function discontinuity in co at the

boundary renders Vco(r') = —to~)ds'6(r' —r(s') )n(s').
Only the tangential component of V(SG/Ro) then con-

tributes, resulting in a Poisson bracket for two functionals
of the boundary

whereas with P = —fds(tc /8 —tc, /2) the same dy-

namics arises from

se"'
, =e,

6x
(i 9)

Together, Eqs. (18) and (19) imply the existence of
two distinct Poisson brackets for the hierarchy. They are

and

jtc(s), tc(s')} i =cl, 6(s —s') (20)

I~($),~(s')},= [a,„+~'(s)]a, a(s —s')

+ tc, (s) ds" tc(s")8,-8(s"—s') . (2i)

Motion in the complex plane A—corollary to the in-

terpretation of the mKdV hierarchy as curvature dynam-
ics is the geometric significance of the KdV hierarchy,
which is found by considering curve dynamics in the com-
plex plane. Recognizing that the unit tangent and normal
are, respectively, z, and —iz„ the complex version of the
general equation of motion (4) is z, =(W —iU)z, . The
nonlinear transformation discovered by Miura [19] allows
one to form a correspondence between solutions of the
mKdV equation and of the KdV equation. If x(s, t)
satisfies the m Kd V equation, then u = —

2 a —i rc, sat-
isfies the KdV equation u, = —u, „+3uu, . Using the
complex representation of the curvature tc= —i(z„/z, ),
we find that

Z$$

Zg

Z$$

ZS

—= —[z,s} . (22)

We recognize [1S] the quantity If,x} as the Schwarzian
derivative off with respect to its argument x.

It follows that the dynamics (4) and (S) for mKdV

may be written as

(23)

(i 6)

where the T" are the successive Hamiltonians of the
hierarchy. It is then natural to ask about the relation be-
tween the two forms of curve dynamics (6) and (16).
This relation is provided by a fundamental geometric
identity connecting functional derivatives with respect to
r(s) and with respect to rc(s) [11,17],

d r~ ds —;2 z
v p ZS

(ii) components of the center of mass,

(24)

In this form, it is possible to see that the localized induc-
tion approximation preserves some of the basic conserved
quantities of the exact vortex patch dynamics [18].
Among these are the following, expressed both as area in-

tegrals over the patch P and contour integrals: (i) area,

ci,. n(s). 6
Br s

6
Sx-($)

(i 7)
2

d'rr~~&ds '
v p 4

ZS
{2s)

where the operator 0 is defined in (9). Thus, with

P ' = —,
' fds tc we obtain the mKdV dynamics from

. ae"'
n.I $

and (iii) angular momentum,

d r(x +y ) ee ftids ' (26)

The constancy of each follows from the dynamics in the
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Since z, /z, is also invariant, the mKdV dynamics z,
= —[z,s}z, retains its form and becomes w, = —[w, s}w,.
However, in the w plane, the curve is no longer evolving

by mKdV dynamics, since s is not its arclength. For in-

stance, the quantity

wads

w/w, , is conserved, but it is not
the area, as it would be if s were arclength for the curve
in the w plane. Nonetheless, the dynamics is integrable,
since it is equivalent to the z dynamics. The recursion re-
lations [6,20] which connect the velocity functions Ut"

and W " of the hierarchy allow one to prove by induction
[17] that all the functions W " iU "—are invariant un-

der SL(2,C) transformations.
Contours associated with periodic solutions of the

rnKdV equation. —Finally, let us turn to the meaning of
the soliton solutions to the curvature evolution equations.
Single-soliton solutions have the traveling wave form
tc(s, t) g(z), where z-s —ct. If we now consider dy-
namics in the form of Eq. (18), and recall that the func-
tional derivatives of the length L and area A are bL/
br trn and bA/Br n, we see such solutions satisfy

n (If +cL +dA ) =0,8
Br

(27)

for some constant d. This is the constrained extremiza-
tion problem for If with Lagrange multipliers c and d
conjugate to the length and area [11]. Note that this
connection between traveling waves and constrained
minimization holds for any If.

For the particular case of the mKdV dynamics, the
function g obeys an ordinary diA'erential equation which

may be integrated twice and rescaled in terms of the vari-
able h =g/2 to yield

h, =P(h) = —h +ch +ah+b, (28)

where a and b are integration constants. Since the poly-
nomial P(h) does not have a cubic term, only three of its
roots are independent; these determine the structure of
the solutions. For a given closed curve of perimeter L,
containing n periods of h, there is a one-parameter family
of solutions specified by the area [11,17]. For small devi-
ations from a circle, these shapes closely approximate the
exact solutions (such as the Kirchofl'ellipse for n =2), al-
though they deviate when the maximum curvature is

large.
In light of the present results, it is natural to reconsider

the Hamiltonian formulation of three-dimensional fluid

dynamics and its relation to that of the nonlinear
Schrodinger equation. On a more general level, one

form (23).
The Schwarzian derivative is invariant under fractional

linear transformations in the complex plane [15]. That
is, Iz, s} =[w, s} under

z —w =(az+b)/(cz+d) .

might ask if the notion of a local expansion of chiral dy-
namics leading to integrability is relevant to other prob-
lems quite removed from hydrodynamics. The growth of
"chiral crystals" [21] and the fluctuations of Fermi sur-
faces [22] are possible examples.
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