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Integrable systems related to the Korteweg-de Vries (KdV) equation are shown to be associated with
the dynamics of vortex patches in ideal two-dimensional fluids. This connection is based on a truncation
of the exact contour dynamics analogous to the “localized induction approximation” which relates the
nonlinear Schrédinger equation to the motion of a vortex filament. Single-soliton solutions of the period-
ic modified KdV problem correspond to uniformly rotating shapes which approximate the Kirchoff el-
lipse and known generalizations. A simple geometrical interpretation of the dual Poisson bracket struc-

ture of the modified KdV hierarchies is given.

PACS numbers: 03.40.Gc, 02.40.+m, 11.10.Lm, 68.10.—m

One of the more remarkable results in the mathemati-
cal physics of Hamiltonian systems is that the nonlinear
Schrédinger (NLS) equation,

()

describes the motion of a nonstretching vortex filament
moving in three dimensions under a local approximation
to Euler’s equation of inviscid hydrodynamics [1]. Here,
the complex quantity w(s,r) is given by the curvature
k(s,t) and torsion t(s,r) of the curve at arclength posi-
tion s and time 7 as

in=_'//s.v_£_|W'2'V’

w(s,t) =x(s,1)exp [ifxds't(s’,t)] ) 2)

Within this local approximation, (1) embodies the motion
of a point r(s,t) on the curve in the form

(3

yhere the tangent, normal, and binormal vectors t, A, and
b comprise the Frenet-Serret triad and the velocity func-
tions in the local approximation are V' =x and U =W =0.
Unlike Euler’s equation, the NLS is known to be an in-
tegrable system with an infinite number of conserved
quantities [2].

The existence of other, but more formal, connections
between integrable systems and Eulerian hydrodynamics
has been known for some time in the context of the
Korteweg-de Vries (KdV) equation, whose Poisson
bracket structure [3] is similar to that of Euler’s equation

r, =Uh+Vb+ Wi,
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[4,5]. Yet, the relation between KdV dynamics and the
actual motion of an inviscid, incompressible fluid has
remained unclear. In this regard, however, a recent study
[6] has noted the equivalence of the modified Korte-
weg-de Vries (mKdV) hierarchy and a certain class of
local dynamics of closed curves in the plane and pointed
out two intriguing connections with two-dimensional Eu-
lerian flows: (i) conservation of enclosed area, consistent
with incompressibility, and (ii) conservation of circula-
tion, consistent with the Kelvin circulation theorem.

Here we show that the connection between KdV dy-
namics and Euler flows in two dimensions parallels that
involving the NLS in three dimensions; i.e., it is through
a local approximation. The elementary distribution of
vorticity of interest in two dimensions is a vortex patch
[71, a bounded region of constant vorticity surrounded by
irrotational fluid. Starting from the exact nonlocal evolu-
tion equation for the boundary of such a domain [8] we
find that within a local approximation the boundary evo-
lution coincides with that which was earlier shown [6] to
be equivalent to the KdV dynamics. The curve motion
has a general form like the space curve described in Eq.
(3), but with motion only in the normal and tangential
directions,

r,=Un+Wwt, 4)
where now U=x,; and W= — ¥ k2. The curvature then
evolves according to the modified KdV equation,

Ki = — Ksss — %szx ) (5)
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which is integrable.

An alternative derivation of these results begins with
the Hamiltonian formulation of ideal hydrodynamics.
For a vortex patch, the Hamiltonian 7 can be expressed
as a functional of the patch boundary r(s), with a long-
range coupling between tangent vectors. This allows the
dynamics to be written in a simple variational form

ﬁ-ﬁ]. (6)

ﬁ = a.\- 5[‘

A local approximation like that described above leads to
an expansion of the Hamiltonian in powers of the curva-
ture and its derivatives in the form

H =¢ds(a+bx2+ck4+d;(3+ S ) (7)

The coefficients a, b, etc., depend on some (arbitrary)
large-scale cutoff in the truncation scheme. These
leading-order terms are in fact equivalent to the Hamil-
tonians of the first few members of the mKdV hierarchy.
Moreover, the existence of a dual Poisson bracket struc-
ture [9] to the mKdV dynamics follows from the possibil-
ity of viewing these and the successive mKdV Hamiltoni-
ans as functionals of r(s), as in Eq. (6) above, or of «(s).
Note that the first two energies in the expansion (7) de-
scribe a contour endowed with surface tension [10] and
elasticity [11,12]. The single-soliton solutions of the
variational dynamics (6) are extrema of these energies
subject to constraints of fixed length and/or area [13]. In
the vortical fluid interpretation, such solutions are ana-
logs of uniformly rotating vortex patches, the Kirchoff el-
lipse, and the “V states” of Deem and Zabusky [14].

Finally, we show that when the dynamics are recast in
terms of the position of the boundary in the complex
plane, z (s,1) =x(s,1) +iy(s,t), a number of conservation
laws and invariance properties arise quite naturally as
counterparts of those of exact two-dimensional Eulerian
dynamics. In particular, the appearance of the Schwarzi-
an derivative [15,16] of z(s,r) in the dynamics leads
directly to the SL(2,C) invariance of the motion.

Contour dynamics for vortex patches.— As first de-
rived by Zabusky and coworkers [8], a point on the
boundary of a vortex patch with vorticity w, moves with
velocity

_wp , [r(s,1) —r(s',1)]
r,(s,t) oy ﬁds In [——~——————-~

ro

}f(s',t). (8)

The arbitrary parameter ro does not affect the dynamics
because the integral of the tangent vector is zero for a
closed curve. In the localized induction approximation
we expand the terms in the integrand up to quadratic or-
der in powers of A=s'—s, and use the Frenet-Serret
equations, t, = — kA, and fi, =«t, to obtain

r(s)=r(s)+AT{(s) — F A kA(s)+ - -,

and likewise for t(s’,r). The integral over s’ in (8) is then
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truncated with a cutoff A at s"=s £ A/2, allowing the in-
tegration to be done term by term. The dynamics may
then be written in the form (4) where the normal and
tangential velocities are

U=—Ax— %Asz\.+ S
and
W=40— 74— 1 B)k’+ - |

where the coefficients 4,(A) and B,(A) are elementary
integrals [17].

The coefhicients A4, and B, for n odd are zero, by sym-
metry; those for n even do not require the introduction of
a small-scale cutoff to remain finite, in contrast to the
vortex line problem [18]. The parameter ro only affects
the time scale of the motion, but it is convenient to choose
it such that the condition W, = — kU is satisfied, as this is
the gauge in which the arclength parametrization is time
independent. A Galilean transformation removes the
term Ag in W. The modified KdV dynamics in (5) fol-
lows from the general relation [6] between curvature evo-
lution and the normal velocity in this gauge,

k== (0,+Kx’+x,0 " ')U=—QU. )

Hamiltonian formulation.— In inviscid fluid dynamics,
the Hamiltonian % is simply the kinetic energy; in two
dimensions it may be expressed as a functional of the vor-
ticity o(r) as

#iwl =t [arr fa* 0@, (10)

Here, 9(r,r') =In([r —r'|/r¢) is the Green’s function for
the Poisson equation V2y= —w® obeyed by the stream
function y. The time evolution of the vorticity, or indeed
any function f(w) follows from the Hamiltonian as
f,=1f, 7} where the Poisson bracket of two functions of
the vorticity is defined by [4,5]

~1 2.0 1] liF; !ég_
r.Gh=[d* o) |V Els|voC ) an
The vorticity evolution @, = —v-Vwo follows from this

and the relation y(r) =6%/éw.

We now observe that for a region of constant vorticity,
the Hamiltonian can be reexpressed as a functional of the
boundary shape by repeated application of the divergence
theorem,

7,101 = — + 02PdsPas' i) iH®), (1)

where R=r(s) —r(s") and ®(&)=¢&%In(|&|/ery). Ex-
panding the integrand for s’ near s as in the local approx-
imation to the contour dynamics, and performing those
integrals in the same manner leads to the curvature ex-
pansion for 7 given in Eq. (7).

For the case of a vortex patch, it is not necessary to
consider arbitrary functional variations of the vorticity,
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but only those which preserve the piecewise constancy of
. These, in turn, are associated with motion of the
boundary normal to itself, suggesting the identification

o _ . Lam 22—
so(r) wp or(s)
One may verify that this functional derivative applied to
the boundary Hamiltonian (12) generates the correct
stream function for the patch,

13)

w(0) =, Pds'lr— (DI xEnlle =1 ferol . (14)

Returning to the Poisson bracket (11) and integrating by
parts, we see the step function discontinuity in w at the
boundary renders Vo(r') = —w,$ds'6(r'—r(s"))als").
Only the tangential component of V(8G/Sw) then con-
tributes, resulting in a Poisson bracket for two functionals
of the boundary

{Rmsﬁm

(9)5()] l()g()] (15)

This is indeed very similar to the KdV Poisson bracket
[3-5]. If we set F=r(s,t) and G =%, the we recover the
boundary dynamics in Eq. (6) [17].

The dynamics generated by successive terms in the cur-
vature expansion of # in (7) leads to the first few
members of the mKdV hierarchy. That is, —asﬁds
gives U =ax;, associated with the ordinary mKdV equa-
tion. The elasticity Hamiltonian % =b®ds x? leads to
U=2b(ky,+ % k’k;), which gives the third member of
the mKdV hierarchy [6]. By suitably tuning the coeffi-
cients ¢ and d in (7) (by choice of r¢), the next member
is also found.

While each of these Hamiltonians has been viewed as a
functional of the contour r(s), the vector r(s) itself does
not appear explicitly, so they may be considered function-
als of x alone. Indeed, it is known [9] that the mKdV
equations may be written as

ST (n)
ok |’

Kl=as (‘6)

where the T are the successive Hamiltonians of the
hierarchy. It is then natural to ask about the relation be-
tween the two forms of curve dynamics (6) and (16).
This relation is provided by a fundamental geometric
identity connecting functional derivatives with respect to
r(s) and with respect to x(s) [11,17],

)
5rGs) ] “a“[ak(s)

where the operator Q is defined in (9).

[n(s) an

Thus, with

# V=1 $ds k? we obtain the mKdV dynamics from
1)
K, =0, {ﬁ' 87 , (18)
or

whereas with # ® = —¢ds(x*/8 —x2/2) the same dy-

namics arises from

SH )
oK ’

K =0 [ (19)
Together, Egs. (18) and (19) imply the existence of
two distinct Poisson brackets for the hierarchy. They are

fc(s), k(s =8,6(s —s") (20)
and

fc(s), k(s N, =10,, + k2(s)19,8(s —s")

+x,(s) [(ds" k(a8 =s) . @D

Motion in the complex plane.— A corollary to the in-
terpretation of the mKdV hierarchy as curvature dynam-
ics is the geometric significance of the KdV hierarchy,
which is found by considering curve dynamics in the com-
plex plane. Recognizing that the unit tangent and normal
are, respectively, z; and —iz;, the complex version of the
general equation of motion (4) is z,=(W —iU)z,. The
nonlinear transformation discovered by Miura [19] allows
one to form a correspondence between solutions of the

mKdV equation and of the KdV equation. If x(s,?)
satisfies the mKdV equation, then v = — 1 x?2—ix, sat-
isfies the KdV equation u, = —ug,+3uu;. Using the
complex representation of the curvature k= —i(z5/z;),
we find that
z | 2
5§ Zss
u=- H __[_] }E-{z,s}. 22
s ), 2| zs

We recognize [15] the quantity {f,x} as the Schwarzian
derivative of f with respect to its argument x.

1t follows that the dynamics (4) and (5) for mKdV
may be written as

21=_{Z,S}Z;=_st+ 7 Zs*zvzr . (23)

In this form, it is possible to see that the localized induc-
tion approximation preserves some of the basic conserved
quantities of the exact vortex patch dynamics [18].
Among these are the following, expressed both as area in-
tegrals over the patch ? and contour integrals: (i) area,

2 Z .
fpa’ rccﬁds 2 (24)
(ii) components of the center of mass,
2
2 zZ_.
fpd rrmﬁds—zs— N (25)

and (iii) angular momentum,
2 2 2 |Z | ’z
fpd r(x2+y )mﬁds-—;s—. (26)
The constancy of each follows from the dynamics in the
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form (23).

The Schwarzian derivative is invariant under fractional
linear transformations in the complex plane [15]. That
is, {z,s} ={w,s} under

z—w=(az+b)/(cz+d).

Since z,/z; is also invariant, the mKdV dynamics z,
= —{z s}z, retains its form and becomes w, = — {w,s} w;.
However, in the w plane, the curve is no longer evolving
by mKdV dynamics, since s is not its arclength. For in-
stance, the quantity $dsw/w, is conserved, but it is not
the area, as it would be if s were arclength for the curve
in the w plane. Nonetheless, the dynamics is integrable,
since it is equivalent to the z dynamics. The recursion re-
lations [6,20] which connect the velocity functions U
and W of the hierarchy allow one to prove by induction
[17] that all the functions W™ —iU ™ are invariant un-
der SL(2,C) transformations.

Contours associated with periodic solutions of the
mKdV equation.— Finally, let us turn to the meaning of
the soliton solutions to the curvature evolution equations.
Single-soliton solutions have the traveling wave form
x(s,t) =g(z), where z=s—ct. If we now consider dy-
namics in the form of Eq. (18), and recall that the func-
tional derivatives of the length L and area A are 8L/
dr=xi and 54/5r =i, we see such solutions satisfy

S (el +dA4) =0, @7)
for some constant d. This is the constrained extremiza-
tion problem for # with Lagrange multipliers ¢ and d
conjugate to the length and area [11]. Note that this
connection between traveling waves and constrained
minimization holds for any #.

For the particular case of the mKdV dynamics, the
function g obeys an ordinary differential equation which
may be integrated twice and rescaled in terms of the vari-
able h =g/2 to yield

hi=P(h)=—h*+ch’+ah+b, (28)

where a and b are integration constants. Since the poly-
nomial P(h) does not have a cubic term, only three of its
roots are independent; these determine the structure of
the solutions. For a given closed curve of perimeter L,
containing n periods of A, there is a one-parameter family
of solutions specified by the area [11,17]. For small devi-
ations from a circle, these shapes closely approximate the
exact solutions (such as the Kirchoff ellipse for n=2), al-
though they deviate when the maximum curvature is
large.

In light of the present results, it is natural to reconsider
the Hamiltonian formulation of three-dimensional fluid
dynamics and its relation to that of the nonlinear
Schrodinger equation. On a more general level, one
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might ask if the notion of a local expansion of chiral dy-
namics leading to integrability is relevant to other prob-
lems quite removed from hydrodynamics. The growth of
“chiral crystals” [21] and the fluctuations of Fermi sur-
faces [22] are possible examples.
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