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Random Transverse Field Ising Spin Chains
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A renormalization-group analysis of the spin- —,
' transverse field Ising model with quenched random-

ness is presented; it becomes exact asymptotically near the zero temperature ferromagnetic phase transi-
tion. The spontaneous magnetization is found to vanish with an exponent P= —,

' (3 —j5), while in the
disordered phase the typical and average spin correlations are found to decay with diA'erent correlation
lengths, which diverge with exponents v= l and v=2, respectively.

PACS numbers: 75. 10.Hk

Virtually the only exactly solvable statistical mechani-
cal model with quenched randomness on a real lattice is

the McCoy-Wu random Ising model [1,2] in which the
random couplings only depend on one of the two coordi-
nates (x). Although this appears extremely artificial as a
2D statistical mechanics model, in the continuum limit in

the y direction, it is equivalent to the random transverse
held quantum spin- —, Ising model with Hamiltonian

where we have generalized to the case where the ex-

changes Jj, drawn independently from a distribution

zo(J)dJ, and the transverse fields h~ with distribution

po(h)dh are both random (but, without loss of generality,
all positive). This is the simplest nontrivial interacting
quantum model with quenched randomness. It undergoes
a ferromagnetic phase transition at T=O as the control
parameter 6—= Inh (where the overbar denotes averaging
over the quenched variables) is decreased to 5, . One

might hope that this transition would be prototypical of
quantum phase transitions in random systems, but, as we

shall see, it exhibits very unusua1 behavior.
The McCoy-Wu model is solved by transfer matrices in

the space (x) direction [1,2]. Although the free energy
and various other quantities are known [1,2], neither the
spontaneous magnetization nor the spin correlations have

been calculated. Nevertheless, rather strange behavior is

found [1]:The susceptibility g is infinite below a critical
value h,~ which is bigger than 5,. , due to the effects of rare
regions which are anomalously strongly coupled. Thus
the model appears to have (at zero temperature) three
phases.

In this Letter, an approximate renormalization-group
(RG) treatment of this model is given, which becomes ex-
act asymptotically at long distances and low frequencies
near to the critical point. Many new results are obtained,
in particular the exponent P of the spontaneous magneti-
zation m —(A,. —A)~ and the behavior of both average
and typical spin correlations which turn out to differ
dramatically. Details of the calculations will be given in

a longer paper [3]. From the exact solution, the principal
correlations which are known are the surface spontaneous

magnetization m, of the end of a semi-inhnite chain
[m, —(5,.

—A) ' with P, =1] [1] and the long distance
decay of the typical transverse correlations C;, =(S;"5,'&
given by

lim —lnC;, /~i —
j~l~-il--

with probability l, where g —/6 —4,.
(

' is the rvpical
correlation length with v= 1 (as for the pure case) [2].
The behavior of both m, and g supports the identification
of h, , =lnJ at the true transition point. At this point the
system with zo=po is exactly self-dual. We shall see,
however, that there is a second divergent length scale, g,
associated with this transition,

To perform a renormalization-group transformation we

follow a procedure close to that used by Dasgupta and

Ma [4] for random Heisenberg antiferromagnetic chains:
We first find the largest energy bonds and fields in the
system with strength 0 = tt o =max IJ, , h, j and consider
decimating away those with 0 —dA ~ J& (or h&) ~ 0,
thereby throwing out the high-energy information and

focusing on the desired low-energy physics. If a given

strong bond Jj = 0, we make the approximation that the
two spins Sj and Sj+] are rigidly locked together as a

spin cluster with an effective magnetic moment g=gj
+g, +~ =2 and an efiective field h = hih, +~/tt & t& ob-
tained from lowest-order perturbation theory in h, ~, +~~/

J, . For a strong fi eld h~
= 0, on'the other hand, we elin&

inate the site and get an effective bond strength J
= J~ —

~ J,/0 & tt between the remaining now-nearest-

neighbor sites j—
I and j+ l. We then iterate this pro-

cedure with the maximum remaining energy scale
gradually being decreased. At each stage the remaining
couplings J and h are independent, although h and the
magnetic moments g are correlated. We must thus keep
track of the distributions p„(h,g) and (Jn). Because of
the multiplicative form of the recursion relations, it is

natural to work with logarithmic variables. Inspection of
the resulting How equations shows that the distributions

get broader and broader even on a logarithmic scale.
Thus the perturbative decimation approximation, which

is initially not very good, becomes better and better under
renormalization since, with high probability, the neigh-
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boring fields jh ] of a strong bond are much weaker than
J=O. Thus, if the width of the distributions of lnJ and
lnh grows without bound, the RG becomes asymptotical-
ly exact. As we shall see, this is indeed the case for h,

near h,
A simple change of variables and a rescaling brings the

RG flow equations into a convenient form: We define
I—:—In(O/Qo), rt= —In(J/0)/I ~ 0, 8:——In(h/0)/I
~ 0, and p =g/I ~, which we approximate as a continuous
variable with p a (positive) exponent to be determined.
We then have for the distributions Pr(rt) and Br(8,p)
the following flow equations:

r)Pr(rt) aP,=Pr+ (I + tt) + Rr(0) drt'Pr(tl ti')Pr(rt')+ [Pr(0) Rr(0)]PrBr tI

aBr(8,p) tIBr 88rr ' =(I+y)Br+(1+8) +ypar t)8 Bp

8', p')+[R (0) —P (0)]8, ,

ever, examination of the conditional expectation of p,
~(pl8), shows that the only allowed physically relevant
fixed point corresponds to p=(1+ JS)/2, i.e., the golden
mean. (Other p's can only arise from initial distributions
of g's with long tails, rather than the actual case for
which all gj = I initially. ) After some experimentation, a
well-behaved solution with this p can be found,

8 (8,p) = e '""exp[A(v)+&8vdA/dv —8], (3)
2z

with A(v) satisfying a simple differential equation which
can be fully analyzed [3], yielding all the needed asymp-
totic behavior of B*.

We are now in a position to find spin correlations
CJ—= (5,'SJ"') at the critical point. Because the fraction of
spins which has not been decimated at a length scale
L —I g is only of order L '+~, most spins will only be
correlated at long distances through the weak perturba-
tive effects mediated by already decimated spins. These
involve many factors of the form h/J (or J/h) at various
energy scales down to e ". For spins with large separa-
tion, the smallest such factor will be of order e

gl I/2-e yielding typical critical correlations

—lnc;, -li —jl'", (4)

with a proportionality factor with a universal distribution
with both width and mean of order unity. An equivalent
result for transverse correlations was derived by Shankar
and Murthy [2]. The mean critical correlations, on the
other hand, behave very differently: The rare pairs of dis-
tant spins, i, j, which at some energy scale are both active
in the same cluster, will have a correlation Cj —I (re-
duced somewhat by the small length scale fluctuations)
and dominate the mean. Thus C~-prob(i and j active in
the same cluster) yielding

c,,—It J I
&— (5)

We now consider moving slightly away from the criti-
cal point, introducing b=h, —A, . Linearizing the RG
equations for R and P around the fixed point, one finds a
single relevant eigenvalue A. = I, with (R —R*)= —(P

+Pr(0)g d8' dp'Br(8 —8', p p')Br(—

where Rr(8) —=fdp Br(8,p) is the distribution of 8.
We first concentrate on the critical point. By duality

between h's and J's we expect that the critical fixed point
will have R* =P*, so that, ignoring the efl'ects of p's, we

need only find one function P*(rt). This satisfies a simple
nonlinear fixed point equation, which has a family of
solutions corresponding to all possible choices of P*(0).
Almost all of these, however, have power-law tails for
large g. Analysis of the RG flows shows that these can
only arise from highly singular initial distributions of the
JJ's of the form tro(J) —J (lnJ) for small J. If we

exclude such singular distributions (which will in any
case have different critical behavior than the generic
case) then the only attainable fixed point is remarkably
simple: P*(ti) =e " (with rt ~ 0 by definition). Lineari-
zation about I'* shows that this distribution is stable in

the self-dual subspace. The scaling of the width of the
distribution of lnJ as lnA implies that, with probability
that approaches I for small 0, the perturbative decima-
tion approximation becomes valid: Universal quantities
obtained at and near the critical point should thus be ex-
act. Errors made at early stages of the RG should only
affect non universal coefficients.

From P*(0)=R*(0)= I, we can find the relation be-
tween length scales and energy scales: The fraction of
bonds remaining at scale 0 = Qoe " obeys dnr/dl
= —[Pr(0)+Rr(0)]/I since (dl/I )Pr(0) is the frac-
tion of bonds decimated with a change dl. Asymptoti-
cally at h„n&-I -I yielding a length scale
L(Q) —(In') corresponding to a dynamic critical ex
ponent z =~, somewhat analogous to "activated dynamic
scaling" in random field magnets [5].

In order to find the spin correlations, we need to know

the typical number of "active" spins, g-I ~, in the spin

clusters at scale I. Each active spin —defined as those

which were not decimated out before the scale at which

the cluster was formed —will be strongly correlated with

the other active spins in the cluster when the strong bonds

which connect the cluster are decimated. Given R*(8)
[and P*(0)],we can adjust the exponent p to find the ap-

propriate full fixed-point distribution 8 (8,p). Joint dis-

tributions cannot be found directly for arbitrary p; how-
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—P*), that corresponds to moving off the critical mani-
fold. The RG flows will be roughly the same as at the
critical point until l6(l )

l

—1 which will happen at a loga-
rithmic energy scale I s —I/l6l. Because the length scales
at the critical point grow as L~—I -', we thus find a true
correlation length g —l8l "with v=2 which is therefore
much larger than the typical correlation length g.

In the disordered phase, at a distance 6& 0 from the
critical point, the correlations C;j between two typical
spins separated by of order g will be —InC;~ —g'i-' from
the typical behavior at the critical point. Analysis of the
RG flows in the disordered phase for I )) I b shows that a

reduction factor of order e ~ will occur in the long dis-
tance correlations for each distance of order ~. Thus
for li j—l » g, we have typical correlations —lnC;,—[I& j I/(—]4'" li

——jl/g with g-g' —a similar form
to the transverse correlations [2].

The mean correlations again behave quite dift'erently.
To analyze these, one must find the distribution of
lengths l of spin clusters at scale I . At a scale of order
I q, this distribution is found to have an exponential tail of
the form exp( —l/I s) —exp( —l/(). This tail dominates
the probability that spins with separation L))& will ap-
pear in the same cluster and thus be strongly correlated.
As at the critical point, these strongly coupled pairs dom-
inate the mean correlations yielding C;, -exp —

li
—jl/g

in the disordered phase.
Note that the typical correlation length exponent v=2

violates the bound [6] for probabalistically defined finite-
size scaling correlation lengths vFs) 2/d=2, while the
exponent v=2 for the mean correlations saturates the
bound: Simple finite-size scaling lengths can be shown to
be essentially equivalent to g [61. Physically the behavior
of mean correlations can be rationalized by considering
the probability that at a distance 6 above the critical
point, a connected region containing both the spins i and

j is, by a random IIuctuation, effectively below its local
approximate critical point. Since the variance of the

Z;,
—=Pk=;(lnJI, —lnhk) is of order li

—jl'i' and Z;,
——BL the probability that Z;j & +6L—which at least
naively suggests strong correlations between S,' and Sj—is of order exp( —

li
—jl 6 /li —jl)-exp( —

li
—jl/g).

We now turn to the behavior in the ordered phase. At
a length scale of order (-l6l at which 6(l ) = —I,
the density of remaining active spins is of order I &~

—
l Sl ~ -'. At longer scales, the 1 's will typically be

larger than the h's and so the spin clusters will be com-
bined to form larger —and eventually infinite —clusters
with only a few extra spins being decimated. Thus the
spontaneous magnetization is determined at the scale I q

yielding m —l8l~ with p=2 —p= —,
' (3 —J5) =0.38, a

new exact thermodynamic prediction. At length scales L
larger than g, the effective J's continue to decrease (but
only as I/lnL); thus near the critical point there is no
well-defined domain wall energy in an infinite chain.
(Far enough into the ordered phase, in particular if all

the Jj's are larger than all the hj's, this is no longer true
and the domain wall energy becomes nonzero [2].)

Our results can be generalized to include the eNects of
a uniform ordering field H(= H—,) F.or small H, we re-
normalize as in zero field until the magnetic energy of a
spin cluster, gH, is of order the cutoff scale A. Near the
critical point, this occurs when I H

—lnl/lHl. At lower
energies and longer length scales, the uniform magnetic
energy dominates, and all the remaining active spins get
expectations of order unity. Thus we expect a scaling
form for the magnetization near to the critical point,

m (H, A) =
l 6l ~sgn(H )W 8ln

1 (6)

with

m (H, A, ) —In. 1

(7)

at criticality and in the ordered phase JR(u — ~ —~)
-- const, In the disordered phase, the moments of the

spin clusters for I H » I » I"s remain of order g-I $ while
the lengths of the connecting bonds grow rapidly as
lr —

~ exp(k6I ) with k a nonuniversal constant. Thus the
magnetization in a small field is of order 6 ~/lr„yielding

rn(H, a) —lHl", (8)

i.e., a continuously variable power law. This arises, how-
ever, not from a fixed line, but from the form of the scal-
ing function Eq. (6). [It is useful to note that a scaling
function of a form similar to Eq. (6) is implied by
McCoy's [2] calculations of the surface magnetization
m, as a function of a surface field H„diff'ering from Eq.
(6) primarily by the replacement of p by p,. =1. This
provides important support for the inexact derivation out-
lined here. ]

We can now understand what happens to m(H) as 6
increases from h, ,' At some point, A=6~, the exponent
6= k6+ in Eq. (8) becomes equal to I and the
linear susceptibility becomes finite, being no longer dom-
inated by singular rare events. Above some higher value
of 6, the nonlinear susceptibility r)'m/6H also becomes
finite, and finally, if the distribution of J's has an upper
bound [and po(h) a lower bound] 6 ~ and the free en-

ergy becomes analytic for small h: This occurs at the
upper boundary of the "CJri%ths phase" [1,2], when ao
the Jj s are smaller than all the hj's. Thus we see that
the point A~ is not very special; it is merely when the
singular part of m(H) dominates the linear part.

We finally turn to the behavior of the random trans-
verse field chain at small positive temperatures T. An
RG procedure similar to that outlined above for H~o
can be used: Stop renormalizing at an energy scale
Doe —T [4]. At this point, the interactions between
spin clusters will no longer force them into ground states,
and we expect each cluster of scale I T to act approxi-
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mately like a free spin with magnetic moment g (-I f.

near h, ), Curie susceptibility, and entropy of order ln2.
The linear susceptibility near A, can then be shown [3] to
have the form

(7 ) T
—1+kb

as T 0 with the same coefficient k as in Eq. (8) and a

~lnT~ ~ factor appearing at h, . The specific heat is

similarly C(T) —T" with symmetry about 6, implied

by duality. At A„C(T)—~lnT~ . Scaling functions
with the scaling variable 6'lnT exist both for thermo-
dynamic quantities and mean spatial correlations.

We have seen that the simplest nontrivial random
quantum system exhibits very peculiar behavior near to
its zero-temperature quantum order-disorder transition.
The logarithmic forms of energy-vs-length and energy-
vs-(5 —6„) scaling, as well as the extreme domination of
mean correlations and thermodynamic quantities by rare
events, are caused by what is eAectively a fluctuationless,
6 =0, critical point. At small energy scales, each
efl'ective degree of freedom is either almost completely lo-

cally ordered (i.e., the spin clusters) or almost completely
disordered (i.e., the decimated spins). The extreme
dangerous irrelevancy of It, which controls the quantum
fluctuations, gives rise to the logarithmic scaling forms
and other physics in an analogous way to activated dy-

namic scaling near the phase transition in classical ran-

dom field magnets [5), with quantum tunneling here play-

ing an analogous role to thermal activation in those sys-

tems.
The main question which one would like to understand

is whether similar phenomena occur near other quantum
phase transitions in random systems. In other 1D sys-
tems in which the randomness is important at long scales,
similar physics will certainly occur both at and far from

phase transitions [7). In higher dimensions, the situation

is much less clear. There are several natural possibilities:
conventional scaling (as is believed to occur at metal-
insulator [8] and superfluid-insulator [9) quantum transi-
tions) with either the order parameter susceptibility
diverging (a) at the transition or (b) before it [9], or (c)
logarithmic scaling as in 1D with highly singular behav-
ior at low temperatures near to the transitions: Although
(b) can certainly occur, whether or not the most interest-
ing possibility (c) exists in higher dimensions we leave as
an intriguing open question.
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