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Staggered-Field-Induced Hole Pairing in One-Dimensional Correlated Systems
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We examine the influence of a staggered magnetic field on states involving a few holes in the one-
dimensional ¢-J and Hubbard models. We apply exact diagonalizations of small systems, an analytical
treatment of an anisotropic model, and a high-field perturbation expansion. Our results suggest that
even modest staggered fields, # <t, induce the formation of bound hole pairs in a broad range of param-
eters, in particular for J/¢ <1 in the ¢-J model and for U/t > 1 in the Hubbard model. In the same re-
gions, by studying the density-density correlations and the compressibility, we argue that many holes
form a paired state and that phase separation does not occur.

PACS numbers: 74.65.+n, 71.10.+x, 75.10.Lp

The discovery of high-temperature superconductivity
(SC) in layered copper oxides and the unusual normal-
state properties of this novel class of metals have in recent
years stimulated numerous theoretical investigations of
low-dimensional, strongly correlated systems. Nonethe-
less, the central question of whether simple prototype
models for planar correlated electronic systems, such as
the two-dimensional (2D) single-band Hubbard or ¢-J
models [1], allow for an SC ground state with paired fer-
mions remains thus far unresolved. Since much more is
known about the properties of one-dimensional (1D)
models [2], it is natural to seek and study 1D analogs of
the real 2D models. Unfortunately, although in 1D both
the Hubbard model [3] and the supersymmetric ¢-J mod-
el [4] (J/1=2) are exactly solvable, they exhibit no evi-
dence of superconductivity in the physically relevant
repulsive-interaction regime. Instead, they belong to the
universality class of Luttinger liquids [S] and exhibit
long-range, power-law behavior of correlation functions,
characterized by a single nontrivial exponent K, [6]. The
phase diagram of the 1D 7-J model is well understood
even away from the J=2¢ point [7]. For instance, nu-
merical investigations confirm Luttinger-liquid behavior
up to the phase-separation instability, which appears at
the critical value J,;(n)/t, which depends on the fermion
density n.

In this Letter we argue that the appropriate 1D ana-
logs for the true 2D system are models involving stag-
gered external magnetic fields, and we show that the
presence of the staggered field changes qualitatively the
model properties, allowing for pairing and arguably for
superconductivity. Specifically, we consider the 1D Hub-
bard model in a staggered field A,

H= —Iz (c,-fsc,-+1‘5+H.c.)+UZn,~1n,-1
—%hZ(—l)i(n,-f*n,-l), Q)

and the related 1D ¢-J model [11],

H= —IZ ((‘,’T;C,‘+1‘S+H.C.)+JZ (S,"S,‘+| - ‘]TII,'H,‘-H)

—hX(—1)'S7. (2)

In the strong-coupling limit U >t the Hubbard model (1)
is equivalent to model (2) with J~4r2/U, if we neglect
the next-neighbor hopping terms which are of the same
order as J. Outside the strong-coupling regime and for
strong fields (h~U), the equivalence no longer holds, so
we investigate both models separately.

Our motivation for introducing staggered fields in the
1D systems is related to the behavior of 2D (or higher di-
mensional) weakly doped magnetic insulators. Very close
to half filling, in 2D, both models (likely) exhibit long-
range antiferromagnetic (AFM) order: At least the
AFM correlation length is large. In a 1D system, to pro-
duce the same AFM ordering, one must (in general) in-
troduce a staggered magnetic field. Technically, the stag-
gered field can be obtained from the original 2D system
by performing a mean-field-type decoupling of the spin
exchange between chains. A finite 4 can then simulate
several phenomena found previously in 2D systems at low
doping, which originate from the longer-range AFM
correlations and from the spin string effects [8,9]. These
include the strong enhancement of hole coherent masses,
and the formation of singlet hole pairs even at J/1 <
[10]. Recently it has been found that finite-range AFM
correlations, introduced in a 1D model via a longer-range
spin exchange, also produce similar effects [11].

Further on we restrict our attention to the proposed 1D
models. We show that the staggered field has a nonper-
turbative effect on the hA=0 state near half filling. In
particular, over a broad regime of parameters finite 4 in-
duces the binding of two holes and, moreover, holes
remain paired even at finite hole concentrations, i.e., pair-
ing wins out over the phase separation. Such effects are
far from obvious, since the external field does not couple
to charge degrees of freedom.

To begin we analyze the 7-J model in the (extreme an-
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isotropic) Ising limit, in which we replace S;-S;+; by
S7S7+1. In this case a single hole (W, =1), introduced
into an AFM (Néel) spin background, moves in an
effective potential

V) =hlr|+5$J0-5,), (3)
increasing with distance |7| due to the string effect— here
caused by the antialignment with the staggered field of
the spins past which the hole has moved— while the addi-
tional term § J outside the origin is due to the formation
of an AFM domain wall, corresponding to a spinon.
Note that the lattice distance is normalized to r=1. An
analogous stringlike attractive interaction exists between
two holes (N, =2), which at the distance r =1 feel the
potential

Vi) =h(r—1) = 5J5-. 4)
The lowest-energy state for N, =2 does not contain spi-
nons, so the exchange energy is not enhanced. There is
even a contact (»=1) attractive term, since two adjacent
holes break one fewer exchange bond than do two
separated holes.

We can now solve the potential problems for N, =1,2
easily. Of special interest is the binding energy of the
hole pair, € =E;—2E;+Ey [10], which can be ex-
pressed analytically in two regimes. For J,h <t one can
use the continuum approximation to the discrete problem,
with the eigenfunctions corresponding to Airy functions,
to find

€, =0.909(th?) '3 —J . (5)

From Eq. (5) it follows that in weak fields (h<1) a
bound pair forms for J > J. with J./t ~(h/1)?*< 1. In
interpreting Eq. (5) one must be aware that it applies
only in the region J,h <t and that the limit #— 0 is very
singular. Hence, although it is true that at fixed J in-
creasing h decreases €5, at h =0 there is no binding at all
between the holes in this parameter regime; in the /=0
case binding occurs only for J > J.=4t. This singularity
can be understood physically by noting that in the aniso-
tropic model any finite field /# destroys the separation of
spinons and holons on a chain. Since individual spinons
and holons would have infinite energies at h#0, it is
meaningful to introduce particles only in pairs. In Eq.
(5) we compare the energies of a bound holon-holon pair
to two separate bound holon-spinon pairs. In the latter
case, spinons cost additional energy ~J, which stabilizes
the holon-holon pairs at J > J.. Clearly, the situation at
h=0 is quite different, since one needs for binding an
essentially different mechanism, coming only from the
contact holon-holon attraction in Eq. (4).

In the strong-field case (A>>t) (arbitrary J), perturba-
tion theory yields

e,,=—1 20Qh —J)t? )
2 (h+LfDQr+ )

In this regime we get J./t ~4(t/h)*>< 1. Both approxi-
mations are consistent with the numerical solution of the

potential problem in the Ising case, for which J./t is al-
ways less than about § whatever the value of A, except at
the singular point =0 where J./t =4. Importantly, for
this Ising case, both the approximate and numerical solu-
tions are carried out on an infinite lattice, so there are no
boundary-condition or even-odd contributions.

The isotropic t-J model can also be investigated analyt-
ically in the A,J/>1t regime by extending the above per-
turbation expansion to include the anisotropy parameter
y=J,/J. It is easy to see that the leading correction is
Sep o< yJ1?/h?> 0, which in the regime J <4t%/h is of
the same order as the correction term already considered
in Eq. (6). To study the full model in the most interest-
ing regime (h,J<1), we use exact diagonalization of
small clusters. Here we present results for a chain of NV
=16 sites with periodic boundary conditions, and A
=J/2. The latter choice has a particular physical mean-
ing since, in a mean-field treatment of a 2D 7-J model on
a square lattice, one finds h =2J(S.), with (S.)~0.3 for
an ordered 2D AFM. We calculate numerically the bind-
ing energy ¢, by comparing energies for N, =0,1,2. We
find that ¢, follows Eq. (5) qualitatively and even quanti-
tatively for J/t <0.6. For instance, in the present case
we get J./t~0.3.

In small systems our simulations suggest that a more
reliable test for binding than ¢, is the behavior of the hole
density-density correlations g(r),

g(r)=N<m,‘,~nh‘,»+,>, (7)
where n, ; =1 —n;, since we find that g(r) is less sensitive
to the boundary conditions and the system size than ¢,
which requires a comparison of results for systems with
different V, and even different total spin S.. In the case
of Ny =2, results for g(r), shown in Fig. 1 for various
J/t, clearly confirm the formation of a bound pair at
J/tZ0.3. Note that for A=0 and J <t, g(r) should be
that of two spinless fermions osin®(zr/N), due to
effective charge-spin decoupling [2,5,12]. As seen in Fig.
1 we find similar behavior for A > 0 but J <J,.. The most
pronounced influence of 2 > 0 remains, however, the rap-
id decrease of the binding threshold, since at #=0 bind-
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FIG. 1. Hole density-density correlations g(r) for the 1-J
model in a staggered field A =J/2 vs distance r for two holes at
different ratios J/t. Results are for the chain with N =16 sites.
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ing in the isotropic 7-J model appears only at J./r~3.5
[7.13]. Turning to the issue of phase separation and the
nature of the multihole states, we start by noting that in
the standard 1D ¢-J model (h=0) at low hole doping
ny <1 the onset of hole binding at J./t~3.5 seems 10
coincide with the phase separation (PS) transition [7],
without an intermediate phase with paired holes. While
the situation in the 2D r-J model appears quite open in
this respect [13,14], our 1D model with 4 >0 clearly
shows that the bound pair formation for N, =2 extends
to hole pairing at NV, =2N, =4, at least in certain re-
gimes.

In fact we can adduce several physical arguments for
the existence of a paired ground state at N, =2. It is
easiest to understand the anisotropic case, y=0. In a
chain with periodic boundary conditions, even /N, and
Np=2N, <N, the ground state is achieved by forming
N, separate pairs, bound by the interaction V(r) in Eq.
(4). Among neighboring pairs there is no stringlike po-
tential, the only interaction being a contact attraction
— 1 J8,-,, which is driving also the PS transition. How-
ever, since for 1>>J the pairs are quite mobile, this term
cannot bind pairs (taking into account hard-core pair
repulsion) for J,h <t. Hence pairs behave as free, hard-
core bosons. An estimate can be performed also for the
regime h>t, J > J.. Here holes form tightly bound pairs
with the pair radius r—~1. Such pairs move with the
effective hopping 7=1%/(h+J/2). In such a system the
contact attraction leads to the phase separation at J,
=47 J o t*/h3, as seen from Eq. (6). Thus for h>1
we expect a broad range J. <J <J, in which the paired
state exists.

To investigate systems with more holes in the isotropic
t-J model we rely mostly on exact diagonalization results
for N=16 sites. Following previous work [7], we deter-
mine the onset of PS in our finite system by monitoring
the vanishing of the inverse compressibility x 'ecA
=F,—2E,+Eq [7]. Along the particular line #=J/2
we find that A falls monotonically from A/t =0.35 at
J/1=0.2 to A=0 at J,/t ~2.0. An independent test for
PS is the behavior of hole density-density correlations:
Namely, for NV, <V, on expects g(r) to fall off with dis-
tance r > Ny, (in 1D) in the PS regime, since holes form a
cluster. In Fig. 2 we present correlations g(r) for N, =4
for a large field A =2t, in order to make effects more evi-
dent. The results in Fig. 2 for large J =2t > J, clearly
confirm the clustering effect in the PS region. On the
other hand, below the PS threshold, J <J,, the g(r)
curves are entirely consistent with the pairing picture.
Here, the falloff of g(r) at short distances r 2 1 marks the
small radius of a single pair, while at larger r the behav-
ior follows quantitatively the result for two free hard-core
bosons. Note also that there are no essential differences
between two curves with different J <J,. The same
physical picture is confirmed by four-point hole density
correlations.

Turning now to the Hubbard model, we recall that the
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FIG. 2. Same as in Fig. 1, but for Ny =4 and at fixed stag-
gered field h/1 =2,

1D repulsive version at & =0 shows Luttinger-liquid be-
havior [2,5] in the whole phase diagram, so there is no
pair formation at arbitrary U/t. Also, in the 2D Hub-
bard model the evidence for the pair formation is much
less conclusive [15] than in the 7-J model. Even with
h >0 in the ID model, it still remains challenging to
prove the existence of bound pairs. One approach is the
analytical evaluation of the ground state for NV, =2 via
perturbation series in /h—hence limited to the region
1/h < 1—but for arbitrary U. The calculation is compli-
cated by the degeneracy of the zeroth-order ground state
and by the vanishing of the binding within the order
1(t/h)?. After a tedious calculation which will be pre-
sented in more detail elsewhere, we find for the inverse
radius g of the pair
_ Ur*(24h*—U?)
u=-— , (8)
A h+U)2h+U)

where Eq. (8) naturally applies only for the regime u > 0,
where the pair is bound. In this regime the binding ener-
gy of the pair can then be expressed as

272
n+ot

Equation (8) has the interesting consequence that for
h>>t any finite repulsion U > 0 induces pair binding but
that the region of U in which the pair is bound is limited
to0<U<U,=24h.

In the regime h <1, which is of greater physical in-
terest, we perform exact diagonalization of a 1D system
with NV =14 sites. The results for ¢, are we believe ob-
scured by finite-size effects, since we find substantial
€, >0 even for h=0 and ¢, ~0 for h > 0. The evidence
from the hole density-density correlations g(r), Eq. (7),
where the hole density in the Hubbard model is defined as
np; = —n)(1 —n;), seems clearer. Results for g(r)
in a system with /V, =2 at fixed U/t =8 and various fields
h/t are presented in Fig. 3. While g(r) for #=0 is com-
patible (as in the ¢-J model) with g(r) for two nonin-
teracting spinless fermions, the binding becomes evident
even for weak fields A/t=20.2. As expected, in this
strong-coupling regime U/t>1 g(r) qualitatively agrees

= 9)

€p =
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FIG. 3. Hole density-density correlations g(r) vs r for two
holes in the Hubbard model with U/t =8 and for different
values h/t. Results are for the chain length N =14,

with that in the 7-J model. Moreover, we find that g(r)
depends only weakly on U/t. In particular, our results for
U/t =4 (not presented here) indicate that the maximum
in g(r) remains at r =3 for h/t =0.4,1.0. On decreasing
U/t the local density fluctuations increase the value of
g(r) and the maxima become less pronounced. In con-
trast to the ¢-J model, the transition to the unbound holes
happens to be abrupt (via a level crossing) in a small sys-
tem, and appears, e.g., at U ./t 2 8 at h =1.

Within the 1D Hubbard model the interpretation of
numerical results for more holes is less straightforward
than for the ¢-J model discussed above. There seems to
be no indication for the existence of the phase separation
within the model at arbitrary h. This is consistent with
the situation in 1D at A =0 [3], which is believed to be
valid also for higher dimensions, although for 2D systems
some evidence for possible inhomogeneous hole configu-
rations and phase separation is coming from the results
obtained within the Hartree-Fock approximation [16]. In
our case we find the parameter A« x ~' definitely positive
for all cases, although decreasing with 4. Also g(r) for
Ny =4 (not presented here) shows some variations with 4.
When compared to data in Fig. 2 these are quite subtle,
which is more plausible due to the substantial pair radius
r 2 3 for the system size (N =14) investigated here. Still,
for finite A > 0 the tendency is for g(r) to increase at
r~1 and to decrease at intermediate r ~N/4, consistent
with the evidence for pairing presented in Fig. 2 for the
t-J model. Our difficulties in establishing the pairing in
the Hubbard model arise from the fact that pairs are not
entirely localized in any limit, as evident also from the
perturbation expression (8).

In conclusion we note that our analytical and numeri-
cal results reveal that a staggered field in both the ¢-J and
Hubbard models appears to induce the pairing of holes.
There are some qualitative differences in the behavior be-
tween the two models, in particular at large fields h>1¢
where the ¢-J model reveals a much stronger pair binding.

This discrepancy can likely be reconciled by taking into
account the next-nearest-neighbor hopping term [9],
which is of the order of J. Our observation of pairing in a
1D model with 2> 0 is of relevance for 2D systems with
pronounced AFM correlations, so we feel that our obser-
vation of pairing resurrects some hope that a paired
ground state exists in repulsive, purely electronic 2D
models. It should be stressed, however, that our results
apply directly only to 1D models with the long-range
AFM ordering (induced by 4 >0). Finite-range AFM
correlations seem not to be sufficient to enable a stable
pairing in 1D, while in higher dimensions the latter possi-
bility is not excluded.
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