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New Aspects of the Mixed State from Six-Terminal Measurements
on Bi2Sr2CaCu20 Single Crystals
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We attached two current and two voltage contacts on both sides of Bi&Sr&CaCuzO, single crystals and
performed transport measurements applying the current parallel to the CuOz layers. In the Ohmic re-
gime, the voltage signal on the side of the current contacts was more than a factor of 1001arger than at
the opposite side. The results are interpreted within an anisotropic resistivity model to obtain the true
resistivities p,b(B, T) and p, (B,T) Amo. del is presented based on the movement of pancake vortices in-
volving vortex shear, vortex cutting, and generation of Josephson vortices between the layers.

PACS numbers: 74.60.6e, 72. 15.Eb

Recent developments in the theory of the mixed state
of high-T, superconductors focus on the layered structure
of these materials. According to [1-4] a vortex is a stack
of two-dimensional point vortices which are confined to
the CuOq planes. The electric transport properties of
these materials have been explained by the evaporation
[4] or a 3D-2D transition of these vortex stacks [5,6].
Melting [7], entanglement [8], or a vortex liquid-glass
transition [9] of the vortex lattice were proposed as well.
As a more conventional mechanism thermally activated
depinning of vortices was proposed [4,10-13].

I n order to gain more information about the dynamical
state of the vortex lattice in the resistive regime of these
materials we performed six-terminal-transport measure-
ments on two Bi~Sr~CaCupO single crystals in the mixed
state. The aim of our work was to discriminate whether
the vortices in the superconductor move as three-
dimensional entities in the form of Aux tubes or in-

coherently as two-dimensional objects within the CuO~
planes. The inset in Fig. 1 shows schematically the ar-
rangement with two current and two voltage contacts at-
tached at both wide sides of the crystal. The field was ap-
plied perpendicularly to the CuO~ planes.

Applying the current only on one side inevitably im-

plies a current component perpendicular to the CuOq
planes. This may possibly generate an electric field com-
ponent normal to the basal plane and consequently an in-

homogeneous current distribution inside the sample. To
test this we also recorded the voltage signal Vt„ton the
crystal face opposite to the current contacts.

We used two single crystals grown from the melt using
Alq03 crucibles [14]. The size of the crystals was about
4.2x1.5&0.014 mm and 2.6&1.3x0.011 rnm, hereafter
referred to as crystals 1 and 2, respectively. Their critical
temperatures were 87 and 88 K with transition widths of
h, T = 3 and 6 K at zero field. The current and voltage
contacts are sputtered silver dots with diameters of
0.4-0.6 and 0.3-0.4 mm, respectively, and were attached
with silver plummet on silver layers sputtered through a
mask. After tempering the contacts had resistivities less
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FIG. 1. Nominal resistivities pt, I, and p] t calculated from
Vt p and t &,t, respectively, assuming uniform distributed
current density within the crystal for an applied current of 10
mA. For reasons of clarity we omitted p&,t for 0, 0.25, and 2 T.
Inset: Schematic picture of the attachment of the contacts on
the single crystals and the current-voltage configuration.

than 1 0 at room temperature [15]. The distances be-
tween the current contacts were 2.5 and 1.9 mm for sam-
ples 1 and 2, respectively; those between the voltage con-
tacts were 1.2 and 0.7 mm.

In the field region of 0.01 to 2 T and for temperatures
T) 35 K we recorded voltage-current curves V&,n(1) and

Vb,t(I) for different temperatures. The current was
varied from 10 to 10 ' A. In general voltage-current
relations were linear up to 20-50 mA and showed positive
curvature above probably due to thermal effects [11]. At
low temperatures and low fields we found nonlinear be-
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havior Vt,pa: I~, and the voltage V~,t was below the reso-
lution of our nanovoltmeter. Only the regime of Ohmic
behavior was included into our further analysis. Figure 1

shows eAective electrical resistivities of crystal 1 as ob-
tained from the top and bottom voltage signals anticipat-
ing uniform current density within the sample volume.
The current was 1=10 mA. In this representation the
curves pt, p follow the typical Arrhenius behavior
Inptx: —Up/T as is usually observed on single crystals
[11] and films [5]. Our values for piop agree well with

p(B, T) obtained by Palstra et al. [12] on a similar crys-
tal. The important point to note is the large difference of
a factor of 10 -10 in the voltages recorded on both sides
of the 14-pm-thick crystal. This implies an appreciable
voltage drop along the c axes and indicates that also the
current distribution within the crystal is nonuniform.
The pg, t curves show a strange nonmonotonic behavior
which we will comment on later. Crystal 2 showed quali-
tatively the same behavior.

Exchanging the current and voltage contacts from top
to bottom gave the same behavior with a diA'erence of a
factor of 2.5 in the absolute value. It may probably be
explained by differences in the surfaces of the sample.

It is evident that the "true" resistivities p, b and p,
parallel and perpendicular to the a-b plane cannot be ob-
tained directly from the measured voltage and current.
To take account of the nonuniform current distribution
we proceed with the development of a linear anisotropic
resistivity model. For the two-dimensional potential dis-
tribution V(x, z) the following differential equation has
to be solved:

I dVi1 dV
dlvJ =

pab dx pc dz

An appropriate solution is given by an expansion
1/2

xz pcx cosh
L p~b

b is the width of the sample in the y direction.
Identifying now Eq. (3) at positions (x;,z;) of the volt-

age tabs with the recorded voltages Vi,n and Vb„we may
then resolve this equation.

From the ratio Vt,n/Vt, „weobtain
i/2

pc

Pab

L
arccosh(Vi p/Vb, t)

xD
(4)

and further from Vt p

(pcpab ) )/2 Vtop

21 sin [tr(x2 —x i )/2L]
' 1/2

xD pcxtanh
L P~b

(s)

xi and x2 denote the coordinates of the voltage contacts.
We compared Eqs. (4) and (5) with those obtained
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L denotes the length of the sample; the a-b and c axis cor-
respond to the x and z coordinates of the coordinate sys-
tem included in Fig. 1. Each component satisfies the sur-
face boundary condition of the vanishing normal field

component at the bottom of the sample at z =0 and at the
edges at x=+'L/2. The coefficients V„have to be
chosen such that on the top surface z =D (D denotes the
thickness of the sample) the normal component j„= —p, 'dV/dz just represents the current injection
beneath the current contact pads and zero in between.
From Eq. (2) it follows that the short-wavelength com-
ponents decay eAectively with the distance from the
current contacts. In the volume of the sample we may
approximate V(x,z) by the lowest n = 1 term alone.
From the condition that the applied current I must equal
the integrated current density I=bfoj„dz, e.g. , in the
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FIG. 2. Resistivities in the a-b plane of the crystal deter-
mined from the measured data by Eqs. (4) and (5) (solid lines)
and by the Bardeen-Stephen model (dashed lines). Inset: Pin-
ning energies determined by the slope of the low-temperature
tail of the resistivity curves in the a-b plane plotted against the
applied magnetic field. tt, Palstra et al. [11]data; rj, Kobayashi
et al [20] data; &&,. our data; tile straight line indicates the
0 '"law.
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FIG. 3. Resistivity perpendicular to the a-b plane of the
crystal determined from the measured data by Eqs. (4) and (5)
(solid lines) and by standard evaluation (dashed lines).

with a difieren method by Montgomery [16] and Logan,
Rice, and Wick [17]. Within the appropriate approxima-
tions we found agreement for (p, /p, b) ' and a discrepan-
cy of a factor of x/4 for (p,p,&)' . This factor appears
in Eq. (11) of [17] with no comment about its origin.

Equations (4) and (5) have been resolved further to
give the true resistivities p, b and p, for crystal I which
are shown in Figs. 2 and 3. The results for crystal 2 are
similar. If we approximate in Eq. (5) the tanh for large
arguments and linearize the sin we obtain (p,p,b)= (V«~bL)/In(x2 —x~), whereas the standard treatment
[12] would give p, s =(V„„bD)/I(x2—x~). The efl'ect of
nonuniform current distribution is that Vt p measures
(p,sp, )' and not p, y alone. Furthermore, we see that]/2,

the thickness 0 of the sample is replaced by the length
L/n which reflects the fact that the current does not occu-

py the whole cross section. Using Eq. (3) and j„= —p,b'dv/dx we can derive an expression for the
current density within the sample. One important result
of our experiment is that the current penetrates exponen-
tially damped into the crystal and is confined to a thin
surface layer of thickness z,p.

j, (z) = j„'exp(—~z ~/z, tr),

where z,rr=Lrr '(p, /, /p, ) ' = 1-2 pm in our case. Only
in thin films is the cross section fully utilized. This may
be a possible reason, among others, for the high current-
carrying capacity of thin films as compared to bulk ma-
terial.

Usually transport measurements on superconductors
are interpreted on the basis of the Anderson-Kim flux

creep theory [18],which in its linearized form [19] gives

prAFq=E/J=poexp( —U/kqT) .

pT~pi= is the so-called thermally assisted flux flow resis-

tivity and describes the observed Arrhenius behavior of
p,b. We determined the pinning energies U from the
slope of the low-temperature tail of the curves in Fig. 2.
In the inset we plotted U(B) together with those obtained

by Palstra et al. [11]and Kobayashi et al. [20]. Whereas
Palstra et al. found pinning energies which scale as
0 ' for fields lower than 1 T our data can be fitted by
U ~ 0 —0.36

In the regime of high flux creep rates beyond 10
0cm p, b deviates from the Arrhenius behavior. We ar-
gue that here the viscous damping of moving vortices can-
not be neglected [12]. In Fig. 2 we demonstrate that p, b

indeed approaches the dashed lines representing the flux

flow resistivity pFF. It is calculated with the Bardeen-
Stephen (BS) model pFF =p„(T)B/B„2(T)[21] using a
linear extrapolation of p„(T) below T, and dB,2/dT
= —1.8 T/K.

Even though the BS model does not account for the
layered structure of high-T, superconductors there is fair-
ly good agreement with the measured data for T & 60 K.
In this regime the viscous drag force rather than thermal
activation determines the flux dynamics.

In some measurements we used two opposing current
contacts on the top and bottom sides applying the current
along the c axis of the crystal. We found linear V-I rela-
tions in the same temperature and field region as for the
previous measurement. In Fig. 3 we compare the resis-
tivities in the c direction calculated from V„~and Vb„us-
ing Eqs. (4) and (5) (solid lines) with those obtained by
measurements where the current was applied between
two opposing current contacts perpendicular to the Cu02
planes (dashed lines), using the standard formula

p, =(V/D)/ (I/bL). The deviations between the two re-
sults can be related to the neglected voltage drop in the
a-b direction and the nonuniform current distribution. p,
also follows an Arrhenius law. The knee close to T, gives
rise to a minimum in the eflective penetration depth z,q

in Eq. (6) and is the reason for the dip in pb« in Fig. 1.
Beyond the scope of the anisotropic resistivity model

our results have implications for the dynamic nature of
the vortex lattice in the mixed state. As long as phase
coherence within the layers is maintained, the voltage in a
superconductor implies movement of vortices with a
transverse velocity ~~, : E„=v~B,. Then according to our
results Vt,p)& V[„tthe vortices on the side of current con-
tacts must run accordingly faster than on the opposite
side. If we regard vortices as continuous objects passing
through the crystal this essentially means longitudinal
shear with a shear angle and a transverse component of
the associated magnetic flux which grows infinitely with

time. To resolve this obvious contradiction there must be
a relaxation mechanism which reduces this vortex shear
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FIG. 4. Generation of Josephson vortices and shear relief in

a tilted pancake vortex lattice. Ellipses denote pancake vortices
in the Cu02 layers.

to obtain a dynamic steady state of flux movement and in

the same turn allows for potential differences between ad-
jacent CuOz double layers. We suppose that this is pro-
vided by Josephson vortices which are located between
the layers [22]. To explain the origin of these Josephson
vortices and their role for reducing the vortex shear we

propose a mechanism, based on the Lawrence-Doniach
model [I], which is shown in Fig. 4. Upon increasing
shear the Josephson vortices are continuously elongated
and may recombine to form longer segments by losing the
connection to the pancake vortices. This represents a
volume source of independent Josephson vortices. Driven

by the normal component j, these move to the edges of
the sample providing a continuous phase slip and thus a
voltage difference between the CuOz layers. The pancake
vortices in adjacent layers in turn lose their prior connec-
tion via the interplanar vortex pieces and rearrange newly
to form an energetically favorable configuration with less
shear.

In summary, we determined the true resistivities p, b

and p, for BizSr2CaCuzO„single crystals using samples
with two current and two voltage contacts on each sur-
face. We found that the ratio of p,b and p, is about 10
and that p,b is related to both flux flow and to the linear-
ized flux creep resistivity. The current density is mainly
restricted to a layer of 1-2 pm on the side of the current
contacts. We concluded furthermore that the vortices
must be kinked due to the nonuniform current distribu-
tion in the crystal and proposed a model which explains
shear relief and generation of Josephson vortices in the
vortex lattice. We expect that also at lower temperatures
in the regime of non-Ohmic behavior the above con-
clusions remain qualitatively correct. In particular the
existence of a finite penetration depth of the transport
current into the sample implies that one regard values for
critical current densities with caution.
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