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First-Order Melting Transition of an Abrikosov Vortex Lattice
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We report results of extensive Monte Carlo simulations of a three-dimensional model system contain-
ing the essential physics required to describe the melting of an unpinned Abrikosov lattice in an extreme
type-II superconductor. APrst order-phase transition is found. At the field which we have studied, cor-
responding very roughly to a field of 10 T along the ~ axis in YBa&Cu307, the latent heat of melting is
=0.3k&T per vortex per layer.

PACS numbers: 74.60.Ec, 74.60.Ge

In a classic paper, Aleksei Abrikosov demonstrated
that a magnetic field starts to penetrate a type-II super-
conductor in the form of a lattice of fllux lines when the
applied magnetic field reaches a critical value from below
[I]. The statistical mechanics of such vortex or flux-line
lattices (FLLs) in extreme type-II, anisotropic supercon-
ductors has been of considerable recent interest and a
source of much controversy. That the three-dimensional
vortex lattice melts into a vortex liquid over a large part
of the (H, T) phase diagram in high-T, , superconductors,
due to their anisotropy and large operating temperatures,
was proposed based on experimental results [2] and
theoretical considerations [3]. In the same context, it was
emphasized [4,5] that the FLL in very anisotropic and
extreme type-II superconductors is intrinsically soft due
to both the quasi-two-dimensionality of these compounds
and, very importantly, the long range of vortex-vortex in-

teractions. The Fourier modes V(k) of the vortex in-

teraction are essentially Lorentzians in the wave number
k, and the width of these Lorentzians is controlled by the
anisotropy of the compounds and the value of' the
Ginzburg-Landau parameter Ic=k/( [6], where k is the
magnetic penetration depth and ~ is the superconducting
coherence length.

From the results of Refs. [4-6] it is clear that the
response of the FLL to nonuniform perturbaiions with

kWO, such as thermal fluctuations (with dominant
Fourier modes at the boundary of the Brillouin zone of
the reciprocal FLL), soflens rapidly with increasing x.

and mass anisotropy. Hence, a vortex lattice in a high-T,
superconductor is expected to be very susceptible to
thermal Auctuations. Estimates for its melting tempera-
ture TM (8) based on a Lindemann criterion [2-5] indeed
predict that the FLL in high-T, superconductors should
be melted over a substantial region of the (B,T) phase
diagram; however, the experimental evidence for a rnelt-

ing transition remains controversial. The Lindemann es-
timates do not address the question of the character of
such FLL melting. It has so far not been satisfactorily
resolved whether the melting transition of the three-
dimensional (3D) FLL is continuous or first order, al-
though a numerical renormalization-group analysis de-
monstrated that the melting is first order for d=6 —e; it

was furthermore indicated that this could be so even for
d=3 [7].

In this paper, we address the issue of the nature of the
proposed melting transition of the 3D FLL within the
simplified framework of a lattice superconductor model
using Monte Carlo simulations. Such an approach has
the advantage of allowing a systematic analysis of the
phase transition of the model. The model system we con-
sider is given by the uniformly frustrated 3D LY model

[8], defined by the Hamiltonian

where the sum is over nearest-neighbor pairs of sites.
Screening is neglected in this model, which should de-
scribe well a relatively dense vortex system (H)) H, ~) in

a very hard (x))1) superconductor. Hence, the soften-
ing of the FLL due to long-range interactions is well cap-
tured by the model ~ The above given model may be
viewed as the simplest lattice version of a type-II super-
conductor, derivable from a Lawrence-Doniach model [9]
when not only the z coordinate, but also the x-y plane has
been discretized.

To reproduce the London theory at zero temperature,
the in-plane and out-of-plane coupling constants in the
model are given by J„,- =Boa/16m K„J -, the magnetic
penetration lengths in the x-y plane and along the = axis
are given by X,-,, and k-, respectively, and @0=2.07
x10 Gcm is the flux quantum. The lattice constant a
serves as a measure of the coherence length j. The
phases p; represent the local phase of the superconducting
order parameter, and 4;I=—(2e/Ac)j Idl A(l), with A
being a vector potential giving the induction in the super-
conductor, 8 =Vx A. We consider the phases p; as dis-
tributed on a stacked triangular lattice (coordination
number 8) which serves as our numerical mesh. The =

coordinate represents the c axis, while the x-y plane rep-
resents the a-b plane in compounds such as Y-Ba-Cu-0
and Bi-Sr-Ca-Cu-O. When Bllc, the vortex ground state
in a uniaxially anisotropic superconductor is an equila-
teral hexagonal vortex lattice, determining the choice ot

discretization of the x-y plane.
An important simplification inherent in the model Eq.
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P(E;T,L) =Z '(T, L)X)(E,L)exp( —E/kBT), (2)

where Z is the partition function, 2)(E,L) is the density
of states with energy E, and L is the linear dimension of
the system. Provided that the system is maintained close
to its first-order phase transition, P(E;T,L) will have a
characteristic double-peak structure corresponding to a
high-temperature disordered state with a peak in the dis-
tribution at Eo, and a low-temperature ordered state with
a peak in the distribution at E]. These two peaks in the
distribution will be separated by a minimum in P(E;

(I ) is the complete neglect of Iluctuations in the induc-
tion 8 =VxA, which we take to be oriented perpendicu-
lar to the x-y layers of our stacked triangular lattice, and
furthermore uniform. This is well justified in extreme
type-II superconductors x)) 1 and at not too low average
inductions: The intervortex distance ao = (40/B) '

should be much smaller than the magnetic penetration
depth A, , and much larger than the mean-field coherence
length in order to justify the neglect of screening effects
and of amplitude Iluctuations of the order parameter.
Within Ginzburg-Landau theory, the lower and upper
critical fields are given by H„i =@0/4nk and H, 2

=40/2zg, respectively, with H, 2/H, ~
=2x )) I by as-

sumption. Hence, there exists a wide field range where
the model of Eq. (I) adequately describes the relevant

physics of the vortex fluctuations believed to be primarily
responsible for melting the FLL [3-5]. It is, however,
clear that the vortex-vortex interaction at and beyond dis-
tances of order X is overestimated by the logarithmic po-
tential resulting from Eq. (I), due to the neglect of
screening. This should not seriously affect the melting
transition for ao&&1. Throughout the simulations, the
filling is preserved, corresponding to satisfying the con-
straint Vx A =B, which is simple, due to the assumption
of uniformity in B.

In general, the J;~ may be anisotropic, and in the limit

J,/J„r « I, we expect the physics to be essentially two di-
mensional (2D). The melting transition for the strictly
2D model was investigated by Huberman and Doniach,
and also Fisher [10], and argued to be of the Kosterlitz-
Thouless type. Of more recent interest has been the issue
of the possible melting of a 3D system of vortex lines.
The model in Eq. (I) with J,/J„~= I is expected to de-
scribe an ensemble of vortices strongly correlated along
the z direction, and hence forming a collection of linelike
objects, motivating our choice of isotropic couplings.

A recently developed technique [11] is used to unambi-

guously identify first-order phase transitions on purely
numerical grounds, and which has been used extensively
in studying the 2D and 3D q-state Potts models. To our
knowledge, this is the first time a similar analysis has
been attempted for studying the nature of a melting tran
sition. We briefly recapitulate the essentials of the
theory. The probability distribution of the total energy E
is given by

T,L) at an energy E . The two peaks in P(E;T,L) will

be of equal height at a temperature T, (L), which we

denote as a pseudo critical temperature approaching the
true critical temperature of the system as L ~. To ob-
serve and measure the double-peak structure in P(E;
T, L) it is crucial to be near T, (L), in order for the sys-
tem to be able to spontaneously flip back and forth be-
tween the ordered and the disordered states. In our simu-
lations, we determine T„(L) approximately by a tempera-
ture sweep of the system; T„(L) is near the temperature
at which the maximum in the specific heat occurs. At the
temperature T, (L), we then have

[F(E~;T„(L),L ) F(Ep,
' T~ (L),L )]/ka T„(L)=hF (L),

(3)

where F(E;T,L) = —ks T I n [P(E;T, L)], and ka T„(L)
&&hF(L) is a free-energy barrier that must be crossed to
go between ordered and disordered states. To obtain
proper equilibrium, it appears necessary to allow the sys-
tem to run long enough to flip an appreciable number of
times () 10) back and forth between the two states.
The crucial test for determining whether or not the tran-
sition is first order, is that hF should be proportional to
the cross sectional -area of the system for large L:
hF =aL '+O(L ), where d is the dimensionality of
the system (in our case d=3), and a is proportional to
the surface tension of the interface between the two
phases.

The Monte Carlo simulations have been performed us-

ing a single-spin update Metropolis algorithm. A field of
f= —,

' =Ba J3/4@a vortices per plaquette in each lattice
layer was used, and the simulations were performed on a
stacked triangular lattice, rather than a simple cubic lat-
tice. This discretization is fully compatible with an ideal
hexagonal Abrikosov lattice, which can thus form in the
low-temperature phase ivithout any amount of frustra
tion. This point is important, since it is the phase transi-
tion of a vortex system in the continuum that we are ulti-
mately interested in studying. Our choice of numerical
mesh is in this respect preferable to the simple cubic nu-

merical lattice, where the hexagonal Abrikosov lattice is
frustrated. In the simulations reported here, the cou-
plings are all taken to be equal, J,y =J, =1, and periodic
boundary conditions are used in all directions. Moreover,
we only consider samples such that L Ly Lz =L, and
W p L, to hold fixed possible geometric effects in the
finite-size scaling analysis.

For the actual production runs on the 3D model, the
initial phase differences on each bond corresponding to
the ideal ground state, shown in Fig. 1, are loaded onto
the lattice. (The numbers on the links correspond to the
gauge-invariant phase differences p; —

p~
—2;~ on each

bond in units of x/9. ) An alternative would be to use a
fixed vector potential appropriate for a field f=

6 to set

up random starting configurations. The role of the vector
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FIG. 1. A unit cell of the vortex ground state of one layer of
our stacked triangular lattice at a field of f=Ba'J3/4@0= —,

'
.

The dots represent the vortices, the numbers on the links corre-
spond to the gauge-invariant phase differences tjt);

—
p,

—3;, in

units of' n/9, and the arrows on the links show the direction of
current flow. In the ground state all layers have the same
phase-difference pattern.

potential would then be to fix the induction B at the start
of the simulations. An example would be the use of the
Landau gauge A=Bxy, in which case the smallest x-y
layer one can consider without introducing frustration of
the ground state from simply periodic boundary condi-
tions would be of size L ~Ly 18x18. This also appears
to be the case for the symmetric gauge A=(Bxr)/2.
The prospect of having to do simulations on a system
where the L; are multiple integers of 18 would essentially
eliminate the possibility of performing a finite-size scaling
analysis along the lines of Ref. [111. Our procedure pro-
duces periodic boundary conditions that are fully compa-
tible with the vortex-lattice ground state, provided that

L, =Ly =3N; N =1,2, . . . for the particular case where

f=
6 . The 3D system can then be heated and cooled

through the phase transition, while guaranteeing that a

regular hexagonal Abrikosov lattice will form in the low-

temperature phase, without frustration from boundary
conditions. For the gauge-invariant phase diA'erences

that are loaded onto the 3D lattice, no reference is ever

made to a specific vector potential, nor to the individual

phases III;. The Monte Carlo moves are carried out on the

phase differences themselves, and the simulations are
therefore performed in a manifestly gauge invariant-
rnanner.

The vortices are located from information about the
phases in the standard way: The gauge-invariant phase
differences in Eq. (I) are summed around each of the tri-
angular plaquettes in each 2D layer Pq[p; —

p~
—A;t 1

=2n(n f), where f is the—filling and n is the number of
vortices inside the plaquette. For the case of f= —,', the
vortex positions in the ground state are shown in Fig. 1.
The next two fillings that are compatible with the stacked
triangular lattice, and hence will allow an unfrustrated
hexagonal Abrikosov lattice to form, are f= —, and

-2.0 -1.6

FIG. 2. F(e;T, (L),L)/ksT, (L) = —InP(e;T„(L),L) i»

shown for various system sizes N =L ', L =9,12, 15,18,21, where

e =F/N, „;„is the energy per site, and T„(L) denotes the pseudo
critical temperature of a system of size L. Each curve has indi-

vidually been shifted by a constant so that its minimum is at
F=O. Note the rapid increase with increasing L in the free en-

ergy barrier tsF(L) between the ordered and disordered states.
The results are obtained for a field of f=Ba'J3/4@0= —,', and

the melting transition occurs at T,.=1.175 at all L.

PF(L) =aL ' —bL (4)

with a =0.028 and b =0.301. We have used L =12, 15,
18, and 21 to obtain this fit, and emphasize that the num-

bers are valid for isotropic couplings J /J, ,
= I. At least

10 Monte Carlo s~eeps over the lattice are necessary to
get good statistics for the system sizes I =18,21, while

5 x 10-' suffice for L = 12, 15. Note that the double-
minimum structure in F(e;T, (L),L) has vanished at
L =9. The large value of the coefficient b distinguishes
our results from those of the 3D q-state Potts model [I I],
and is responsible for the vanishing of AF(L) between
L =12 and L =9. Formally, the L" term in our case
corresponds to a line energy, but what it means physically
is at present unclear.

The energy versus temperature is shown in Fig. 3 for a

f=
~& . To consider the phase transition at a filling sub-

stantially diA'erent from f= —,', the filling f=
—,', would

be interesting. However, we have so far been unsuccess-
ful in our limited attempts to equilibrate the system at
f= —'

We now turn to the main results of our simulations
(obtained at f= —,

' ), displayed in Fig. 2, which shows

F(e;T,(L),L)/kttT, (L) = —InP(e. ;T, (L),L) for . various
system sizes, where e =E/N, ~;„ is the energy per lattice
site. Note the marked increase in the barrier hF(L) be-
tween the ordered and disordered state with increasing L.
For the system sizes we have been able to access, /sF(L)
is fitted by
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FIG. 3. Energy per site e =E/N, t,;„as a function of tempera-
ture T, as measured upon rapidly heating and cooling. At each
temperature the system has been run for only 4000 Monte Car-
lo sweeps. Note the strong hysteresis effect, indicative of the
first-order melting transition.

ductor model representing the vortex-line lattice in an ex-
treme type-I I superconductor. Monte Carlo simulations,
in conjunction with finite-size scaling analysis, unambigu-
ously show that the vortex-line lattice undergoes a first-
order melting transition, and produce an estimate for its
latent heat.
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Note added. —After the bulk of this work was complet-
ed, we received a preprint from J. Lee and K. J. Strand-
burg, with similar simulations performed on the 20
hard-disk system Fo. r this system, AF(L) is consider-

ably smaller than for the 3D Abrikosov lattice studied
here. Experimental evidence for a first-order melting
transition of the Abrikosov lattice in twin-free Y-Ba-Cu-
0 crystals, based on transport measurements, has now

been reported in a preprint by H. Safar et al.

rapid heating and cooling run for L =18; note the hys-

teresis effect similar to the one found in Monte Carlo
studies of flux-flow resistance in a 2D frustrated Joseph-
son junction array [12], but considerably more pro-
nounced in our case. The change in entropy AS=AE/T
of the transition that we measure from Figs. 2 or 3 is

AS=0.3ktt per vortex per layer. Our model with J, =J,y
has an essentially isotropic coherence length in lattice
units of the stacked triangular lattice grid. In Y-Ba-Cu-
0, the coherence length is anisotropic by a factor of 6-8,
the layer spacing is =12 A, and hence our in-layer grid
spacing corresponds to 80 A in Y-Ba-Cu-O. This means
that the vortices are =140 A apart, and our magnetic
field of f= —,

' =Ba J3/4@o corresponds very roughly to
B= 10 T. The simplifications in the model Eq. (I ) could
cause our prediction for the jump in the entropy to be oH'

by an appreciable amount. However, as an order of mag-
nitude estimate it should be useful as an indication of
what sensitivity is needed for an experiment to detect AS
or the jump hM in the magnetization M at this melting
transition. Note that, neglecting demagnetization effects,
hS and h, M are related by the Clausius-Clapeyron equa-
tion [13], dTtt/dH, , „n~ =AM/AS, where H, pn~ is the ap-
plied magnetic field. However, the usual demagnetiza-
tion factor, depending on the sample geometry, will

reduce M and hM from this value.
The effect of anisotropy in the coupling constants J,

and J ~ is an interesting issue, which will be addressed in

detail in a forthcoming paper. SuSce it to say that for
anisotropies such that J„~/J, ( 16, we find that the tran-
sition becomes more strongly ftrst order as J «/J, is in-
creased from 1.

In conclusion, we have considered a lattice supercon-

"' Present address: Physikalisches Institut der Universitat
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