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We present a detailed study of the dynamic response of overdamped Josephson-junction square array»
driven by a dc plus ac current, including self-induced magnetic-field effects, as a function of a parameter
x.. The transition from type-II (x.) 1) to type-I (a (1) behavior is studied in detail. It is found that
the 1V characteristics show fractional giant Shapiro steps, with and without external magnetic fields,
with microscopic coherent vortex dynamics fundamentally different in the two extreme x limits. Our re-
sults in zero external magnetic field are in good agreement with recent experiments in Nb-Au-Nb ar-
rays.

PACS numbers: 74.50.+r, 74.60.Jg, 85.25.Dq

The recent discovery [I] of fractional giant Shapiro
steps (FGSS) in dc plus ac current driven Josephson-
junction arrays (CDJJA), in the presence of a transverse
magnetic field with frustration f=0&/40 =p/q, where 4& is

the magnetic flux through a plaquette, @0 is the quantum
of flux, and (p, q) are relative primes, has motivated
several interesting experimental [2,3] and theoretical
[4,5] studies. The FGSS were found in proximity-effect
CDJJA and appear as plateaus in the time-averaged volt-

age Vv =/V (n/q) hat/2e, with n an integer, co =2trv the ac
current frequency, and N the number of junctions along
the current direction. These results have been explained
through studies of an overdamped resistively shunted
junction (RSJ) model, in terms of a collective motion of
the ground-state vortex lattice configurations induced by
the f=p/q external field [4]. Giant half-integer steps in

the IV characteristics have been identified with a different
type of axisymmetric coherent vortex state (ACVS)
present in the case where there is no external magnetic
reld [6].

The experiments have been carried out for the most

part in proximity-effect arrays that have strong temper-

ature-dependent critical currents [I-3]. A carefully con-
trolled narrow temperature range was studied [I] in order
to minimize the self-induced magnetic-field (SIMF)
effects in the experiments. Previous theoretical studies of
FGSS have not included these effects. However, other
authors have shown experimentally that SIMF effects can
be essential for understanding their data [3]. This paper
presents a detailed analysis of the dynamic response of a

CDJJA including the SIMF effects. We analyze the con-
tinuous transition from type-II (tr) I ) to type-I (tr ( I )
behavior, as a function of a.=A, t/a, with A. t a London

screening length, defined below in terms of the self and
nearest-neighbor mutual inductances of the current loops
in the array, and a the lattice spacing, which plays the
role of a coherence length. For all the ~ values con-
sidered, we find a series of fractional giant plateaus in the
IV characteristics, even when there are no external mag-
netic fields applied. It is important that for x. & 1 the gi-
ant Shapiro steps are not found to be due to coherent os-
cillations of ground-state vortex configurations, as is the
case in the tr)) I limit with f=p/q&0

The model studied in this paper is defined by the
"course-grained action"

2 = —Q EJ cos[A„O(r, t) —A-„-(r, t)] —g I'(t) [6„0(r,t ) A„(r,t)]-
pl, f r, yv

+ 2 g [4(R,t) —N'(R)]A '(R, R')[@(R',t) —4'(R')].
R, R'

The variables included in the definition of 2 are the fol-

lowing: The order-parameter phase difference between
the two superconductors forming a Josephson junction is

d,„-O(r, t ) =8(r+p, t ) —8(r, t ). Here (r, It ) labels the
links in a square lattice with end points at the lattice sites
r and r+yi with p a unit vector along the x or J axis.
The total flux @(R,t) through a given plaquette centered
at R is given by @(R,t) =&"(R)++RA(R,R')J(R', t),
where @"(R) is the flux due to the external field, J(R, t)
is the current flowing around the plaquette at R, and

A(R, R') is the mutual inductance matrix that determines
how the screening currents modify the external field. A

general expression for this matrix, as applied to a square

array, is not known in detail. In this paper we consider a

model of A(R, R') that only includes the self and

nearest-neighbor mutual inductance contributions. The
gauge link variable is A„(r, t ) = (2tr/@0) f-,'+"A. dl,
with A the total vector potential and 2~(R, t )/+0
=d„-AA„-(r, t). The Josephson coupling constant is

EJ =(@0/2tr)l, . , with I,. the critical current which is taken
to be the same for all junctions. The external current ap-
plied at the bottom of the array along the y direction
enters as a boundary condition in Eq. (I) with I'(t)
=Id, + I,.„.sin(2tr vt).

We are interested in studying the dynamics of 0(r, t)
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and @(R,l ) self-consistently. The dynamical equations
are taken to be given by the RSJ model for 0 and
Faraday's law for N. Each one of the two dynamical
variables has its own characteristic frequency, v&

=2m%I„/@o, and v@=R/A, where A is an effective in-

ductance that depends on the specific model for A(R, R'),
and %' is the shunt resistance along all the links in the
lattice. In the linearized regime of the Josephson term in

Eq. (1) we can identify tr=(2nI„A/4o) 'l =1j,t/a, or in

terms of the characteristic frequencies, tc =v~/vs. Tak-
ing this relation into account is essential to the implemen-
tation of an efficient numerical algorithm to study the
problem. In the extreme type-II regime the fast variables
are the fluxes while the 0's are slow, with the opposite
happening in the extreme type-I regime. This situation is

typical of "stiff" problems in ordinary differential equa-
tions, which are notoriously difficult to treat numerically
and even analytically, for they lead to singular perturba-
tions [7]. On the other hand, since the equations of
motion are gauge invariant we can use this symmetry to
find the most appropriate gauge to solve the problem. It
turns out that one specific gauge does not allow us to
efficiently solve the problem for all values of x. In the
x»1 limit, a convenient gauge to choose is the Coulomb
gauge given by h, - 3„-=0. We have implemented an al-
gorithm that works in this case. Our discussion concen-
trates on the intermediate regime 0. 1 & a & 10, where
the stiffness problem is less severe. As we shall see below
this is an experimentally realizable regime. It is con-
venient to use the temporal gauge to efficiently solve the
problem in this range of parameters. This gauge entails
the replacement 6„8(r,t ) A-„-(r, t ) +„(r—, t ). T-his

gauge has been used extensively in the past [8] and more
recently within the context of a JJA model of ceramic
high-temperature superconductors [9]. In terms of +„-
the Langevin RSJ dynamical equations of motion are
given by

current. This implies that relatively large lattices have to
be simulated to get physically correct asymptotic behav-
ior. We have developed an efficient numerical algorithm
[IO], in the spirit of those used in Refs. [5,61, that takes
all these constraints into account.

We proceed to present the results from calculations us-

ing two models for the inductance matrix. In the pres-
ence of a nonzero f we find that it is sufficient to use the
self-inductance model A(R, R') =AbR R. On the other
hand, in the zero-field case it is essential, as found experi-
mentally [3(b)], to include the edge fields. We model the
edge-field effects in terms of an inductance matrix defined
as A(R, R') =ABtt R

—MhR R+„-, with A and M con-
stants. In this case A=A —4M, and the edge magnetic
fields B,ds, —~ Ml'/a . Including the M term is

equivalent to having a finite demagnetization factor d in

the array, with 1 defined from AH = —d JK and d
= —A '+It&RA(R, R'), where AH is the difference be-
tween the external and internal magnetic fields. The total
magnetization JK is proportional to QRJ(R). In an
external field the array behaves as having an effective
self-inductance A=(l —d)A(R, R). In the diagonal case
d=o, in the nearest-neighbor approximation d =4M/A,
and in the infinite sample limit d 1. From our results
we believe that this approximation for A(R, R') qualita-
tively captures the essence of the self-field effects.

In Figs. 1(a) and l(b) we show results for the IV
characteristics of systems with 40x40 lattice sites with

f=
3 and A(R, R') =ABR tt. Figure 1(a) shows the re-

sults for a =2.27, while Fig. 1(b) has ted=0. 44. Note that
the value of A is implicit in the value of x in the type-II
regime. In the type-I regime we choose to give the results
as a function of ~ and d instead of A and M, for these pa-

2.0

(2) 1.5

The Langevin white-noise function ri„-(r,l) has correla-
tions

(rip(r, t)ri„- (r', I')) =21 kaTb, ;b„- „-b(r I'), —

where T is the temperature, kq is Boltzmann's constant,
and the dissipation parameter is I =(&o/2n) R '. The
flux at R is calculated from

1.0

0.5

2~(R, t)/@o = —6„-AO„-=——
W„,(r)+4'„(r+p~)

—'l„(r+p„)+V„(r) .

Equation (2) represents a set of N coupled nonlinear
stochastic equations driven by the external current. To
allow the internal and external magnetic fields to relax to
their correct stationary values we have to take free end
boundary conditions in the direction perpendicular to the

0.0

FIG. 1. IV characteristics for f= —,', I„=l„v=0.1 ve,
M =0, for lattice size 40&40. (a) Type-II array with x =2.27;
(b) type-I array with @ =0.44; (c) the same as (b) including
edge fields with M/A=0. I (d=0.4). The giant Shapiro steps
at n/3 and n/2 are marked. Curves start about the same place
and are displaced for clarity.
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rameters permit a more direct comparison to experiment.
It is clear from these results that in both limits the IV's
show giant Shapiro steps at —,

' and —,
' fractions. We note

that for a & I there is a small 2 step, as was found when
tc=~ using free boundary conditions (Lee and Stroud
[4]), while for tc( I the —,

'
step is much bigger. There

are also higher harmonics seen in the type-I IV curves
that we have not highlighted in the figure for clarity. In
Fig. 2(a) the widths of the —,', 3, and 2 steps are plotted
as a function of I/tr. For comparison, in Fig. 2(a) we

show the results for the 2 -step width as a function of ~
for f= —, . We distinguish three qualitatively difl'erent tc

regimes in this figure: (i) the type-II regime where the
step width remains essentially constant and equal to the
x =~ result and the type-I regime where the step width

(ii) increases initially and then (iii) decreases. The de-
crease occurs when the characteristic frequency v+& v,

which means that the current distributions are not able to
follow the oscillations of the external current and thus the
coherent state is less robust. As mentioned before, the
FGSS in the a. =~ limit were explained in terms of a
coherent oscillation of the vortex lattices formed when
I"=0 [l,2,4]. When screening is included the ground-
state vortex lattice configurations get modified. In the
top left-hand frame of Fig. 3 we show an instantaneous
vortex lattice configuration for the —,

'
step in the f= —,

'

case, with r =2.27, which oscillates with period two. We
notice that there are "cluster" checkerboard regions, with
structures as in the ~ =~ case, separated by "Bloch" or
"soliton" surface walls due to the screening currents.
The size of the "cluster" regions in this particular case is
about 1=7a while the Bloch wall is 2a. As x ~, , with

rc, «1 the number of size 2a Bloch walls increases, and
for a & a,. the state is made of rows of constant vorticity
(shown. in the bottom left-hand frame in Fig. 3), a struc-
ture reminiscent of the intermediate state, although this
one is dynamically generated. As is seen in Fig. 2(a) the
tc, (f)—I. In the type-l regime the I'=0 field distribu-
tions correspond to the Meissner state. Starting from this
state and turning on the external I'(r) current, the
Lorentz force induced by I"(t) "pulls" the flux into the
sample and, after a transient, the vortex distributions look
as shown in the bottom left-hand frame of Fig. 3. The 2

step in the IV characteristic corresponds to a coherent os-
cillation of the striped vortex distributions that oscillate
between + l and 0 vorticities with period two.
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FIG. 2. IV step widths, &I/I, vs I/s. , for I,,=l„v=O. I vg,

M =0, and lattice size 40x40. (a) The upper curve corre-
sponds to the —,

'
step for f= —,', while the three lower curves

correspond to the —,', —,', and —,
'

steps with f= —,
'

. (b) Same as
(a) for the —,

'
step in zero field and keeping constant d=0.4.

Inset: The width of the —,
'

step as a function of f for K =0.44
and the same parameters as above.

I IG. 3. Instantaneous vortex configurations for —,
'

steps.
Top lel't-hand frame corresponds to f= —,

'
and v=2. 27 (type

I I). Bottom lel't-hand frame corresponds to f= —,
' and s =0.44

(type I). White and black squares indicate 0 and +1 phase
vorticity per plaquette, respectively. The phase vorticity is

defined as (I/2x)+II(r) = ~ I. Right-hand frames correspond
to f=0 with s =2.27 (top) and s =0.29 (bottom). Same d as
in 2(b). Here white, gray, and black indicate —l, 0, and +1
phase vorticity per plaquette, respectively.
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We now move to consider the case when edge fields are
explicitly included. First we show in Fig. 1(c) that for
the case f= —,

' the step structure in the IV characteristics
is qualitatively the same as in the M=O case. The situa-
tion is different in the f=0 case, since for all the values
of x. studied here there are half-integer GSS only when

M&0. In Fig. 2(b) we show the change in the 2 step
width (f=0) as a function of 1/ic F.irst we note that, for
x =~, when we include the edge fields as boundary con-
ditions, i.e., fixing B,g~, =+ 1 at the edges, we find that
after a complicated transient the system settles exactly
into the ACVS, including the angle of 27', as discussed
in Ref. [6], even when there are no defects in the sample.
This result (« =~) is marked as ACVS in Fig. 2(b). For
finite x, and free end boundary conditions, the edge fields

are generated dynamically and the —,
'

step width changes
in a qualitatively similar way as when f&0. Quantita-
tively the width of the & step for f=0 is smaller than the

step with f= —,', and x„(f=0) & «.„(f). The micro-

scopic vortex dynamics in both cases is very different. In

the type-II regime (f=0) with «=2.27, the oscillating
vortex configurations consist of columns of isolated unit

charged positive and negative vortices with period two.
This state is shown in the top right-hand frame in Fig. 3.
We see that as x decreases from ~ =~ to 1 & x && ~
the angle for the symmetry axis for vortex oscillations

changes until it becomes collinear with the external
current direction. The vortices are generated by the edge
fields at the edges of the lattice. In the x &1 limit we

have two distinct vortex oscillatory motions with period
two depending on whether v& v~or v& v~. In the form-

er case the vortex columns generated at the edges move

towards the center of the array and collide, creating and

annihilating individual vortices. In the regime where
v) v+, the induced currents cannot follow the external
one and thus the vortex stripes originating at the edges of
the lattice do not have time to collide with each other
while still oscillating back and forth with period two.
This situation is shown in the bottom right-hand frame of
Fig. 3. The experimental rc values are calculated in

[1(b)] using Pearl s formula, which is valid in a continu-
ous film. The value of «(T, =3.5 K) =280 quoted in

[1(b)] is in the type-II regime but with a XL & N =1000.
For T=2.5 K a 2 step was observed with a value for a.

of 2.5, which is quite far from the extreme type-II re-

gime. From our analysis we conclude that the —,
' step

seen in [1(b)] is due to screening effects. The «. values

considered here would then appear to correspond to their
temperature range of [1.5 K, 2.5 K]. Also, the x values

in the experiments by Lee et al. [3(b)l correlate closely
with our values. Furthermore, our discussion of the
steps for f=0 gives support to the experimental finding in

Nb-Au-Nb samples that edge fields are of importance in

producing these steps [3(b)]. A further test of this asser-
tion is provided by the inset in Fig. 2(b) that gives the 2

step width as a function off This result is in goo.d agree-

ment with the corresponding result presented in Ref.
[3(b)]. Although the results presented above correspond
to T =0 we have verified that they are stable at low tem-
peratures.

In conclusion, we have presented results of a study of
the response of current driven Josephson-junction arrays
including self-induced magnetic-field effects. A detailed
analysis of the evolution of the vortex dynamics when go-
ing from type-II to type-I behavior was presented. We
have found fractional giant Shapiro steps even in the ex-
treme type-I regime, where self-field effects are dom-
inant, and when the zero current ground state is the
Meissner state. We have shown that giant fractional
steps in the IV characteristics can be generated under

many different circumstances, but for which the underly-

ing microscopic vortex dynamics can be fundamentally
different. Our results suggest that it would be very in-

teresting if the real-time magnetic-field dynamics could
be followed experimentally as done recently in experi-
ments in high-T, . superconductors [1 ll. A detailed dis-
cussion of these and other related results will be present-
ed elsewhere [10].
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