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Excess Conductance of Superconductor-Semiconductor Interfaces Due to Phase
Conjugation between Electrons and Holes
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A semiclassical description is given of charge transport through a superconductor-semiconductor inter-
face. As a result of the presence of a potential barrier both Andreev and normal reflection occur. Elas-
tic scatterers in the semiconductor generate multiple reflections at the interface. The constructive quan-
tum interference which results from the phase conjugation between electrons and holes enhances the
(differential) conductance above its classical value. This excess conductance is suppressed by a magnetic
field, or by a finite energy. The latter can be due to a finite voltage bias or a finite temperature.

PACS numbers: 73.20.Fz, 73.40.—c, 74.50.+r

Andreev reflection [I] is a phenomenon which occurs at
the interface between a superconductor and a normal
conductor. An electron from the normal conductor with
an energy E (relative to the Fermi energy Et ) below the
superconducting gap 6 cannot enter the superconductor.
Instead, it is retroreflected [1] as a hole, a particle carry-
ing a charge +e.

In the absence of a magnetic field electrons and holes
at the Fermi energy can be considered as each other' s

time-reversed particles. For the classical dynamics this
implies that the Andreev-reHected hole will trace back
the path of the incoming electron [2]. Another conse-
quence of the time-reversal symmetry between electrons
and reflected holes is related to their wave functions. The
wave function of the reHected hole is identical to that of
the incoming electron: y/, (r) = y, , (r) =exp(ikt" r). This
means that the phase changes which are accumulated by
the incoming electron are canceled by opposite phase
changes of the reflected hole, when it traces back the path
of the incoming electron,

In this Letter we will show that the quantum interfer-
ence which arises I'rom this phase conjugation [3] can re-
sult in an excess conductance of superconductor-semi-
conductor (S-Sm) interfaces, and can provide an ex-
planation for the recent experimental results of Kast;&1sky
et al. [4], and Van der Post et al. [5].

We model the S-Sm interface region by a geometry de-

picted in Fig. l. It has three sections. In the reservoir

the particle distribution is assumed to be in equilibrium

[6], with an electrochemical potential p = —e V relative to
the superconductor. The boundary of the reservoir is put
an inelastic scattering length l;„(Dr;„) '- away from the]/2

S-Sm interface, with the diftusion constant D, and the in-

elastic scattering time r;„. In the middle region elastic
scatterers are present, which result in an elastic mean

free path l, (l, ((l;„). Inelastic scattering is absent in

this region, and both electron and hole waves propagate
in a phase-coherent way.

At the S-Sm interface between this region and the su-
perconductor an electrostatic potential harrier [7] is

present. The scattering at this barrier is described by an

S matrix [8]. In the absence of a magnetic field time-
reversal invariance holds, and the most general expression
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FlG. 1. Geometry of the model, consisting of three sections
(see text).

with reflection probability at the barrier R=IrI and
transmission probability T =

I t
I

=1 —Ir I

-. These, to-

gether with the phases tt and P, are determined by the
specific shape of the barrier. At FF the 5 matrix for
holes is given by 5p =5,,*.

The amplitudes r, , (I) and r„/, (I) for normal and An-

dreev reHection of incoming electrons, as well as the am-

plitudes r/, h ( I ) and r/„, (I ) for normal and Andreev
reflection ol' incoming holes can now be calculated [9]:
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Note that rt„(I ) =r,t, (1), and that r„(1)=rtt, (1).
Figure 1 illustrates a typical trajectory of an electron

emitted by the reservoir. The electron reaches the S-Sm
interface, after being scattered several times (path I). At
the interface it is either reflected as an electron, with a
probability Ptv = Ir„(l ) I, or it is retroreflected as a hole,
with a probability P~ =Ir, t, (1)I =I —P~ In . the latter
case the hole will trace back the path of the incoming
electron, and flow back into the reservoir.

In our analysis we assume that the scattering in the
semiconductor is "classical" [10], which implies that
there is a well-defined relation between the direction of
the incoming and reflected waves. This is valid when the
size W of the scatterers is large compared to the Fermi
wavelength XF, in which case the scatterers act as mir-

rors. For point scatterers [1 ll (W«kF) our analysis
cannot be applied without modification.

Depending on the configuration of the scatterers, the
reflected electron can return directly to the reservoir, or
(as shown in Fig. I) proceed along the loop formed by
path 2, and be reflected at the S-Sm interface once more.
The final result is that the incoming electron wave par-
tially returns to the reservoir as an electron wave (along
path 3) and as a hole wave (along path I ).

For the calculation of the amplitudes of these waves,
and the charge currents carried by them, it is crucial to
take into account the interference due to electrons travel-

ing along path 2 in one direction, and holes traveling in

the opposite direction. The reflection amplitudes for tra-
jectories involving two rellections are

I +exp(id')
I+ [(I —

I» I') '/(I+ Ir I
') ']exp(i~&)
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with 3 the area enclosed between the superconductor and

the loop formed by path 2, and 8 the applied magnetic
field.

In the absence of a magnetic field A&=0 for particles
at EF, irrespective of the length and shape of path 2.
This is a consequence of the phase conjugation between
electrons and holes. Equations (3a) and (3b) show that
for &&=0 the probability Ir, t, (2)I for Andreev reIIection
has a maximum, whereas the probability Ir„(2)I for
normal reflection has a minimum. Using recursion rela-
tions one obtains the amplitudes r, t, (N) and r„(N) for
trajectories having been reflected N times at the S-Sm in-

terface.
For E&0, or B&0, the phases dP~ associated with

different loops between the Nth and the (N+1)th
reflection will generally be diflerent. Simulations of a
continuous random walker in a three-dimensional slab
with a width d have shown that the average loop length
(L) scales linearly with d. The relation between (L) and
the transmission probability T„=l,/d of the slab is given

by (L)=0.351,/T„. The distribution P(L) of L exhibits a
power-law behavior for not too large lengths. For large
L, P(L) decays exponentially.

In the following calculations we have chosen L ran-
domly according to the approximated distribution

4Ir I exp[i(2P+P, )]
(1+ Ir I')'+(1 —Ir I')'exp(in') '

with pp=p, +pt, . The phase shift acquired by electrons
t

is given by p, =(kF+E/hvF)L+2~/40, with L the

length of path 2, and @ the magnetic flux enclosed be-
tween path 2 and the superconductor (4o=h/e). The

phase shift of the holes is pt,
= —(kF —E/hvF)L+2~/

@0. The total phase shift is therefore [12]:

(3b)

1/3l„ for 0 & L & I„
(I/3l, )(L/l, ) ', for l, &L & L, ,

(5)

where L, is a cutolT length chosen such that the average
length (L) is equal to the value given above.

Figure 2 shows the N dependence of Itv = I

+ Ir, t, (N) I

—Ir„(N) I, calculated for a typical barrier
with T =0.2 [in Ref. [9] the transparency of the barrier is

described by a parameter Z, with T=l/(I+Z )]. The
quantity J~ indicates the average contribution to the

charge current of trajectories which have been reflected
N times. Figure 2 shows that for V=O (and B=O) Itv

rapidly approaches 2, indicating complete Andreev re-

flection. This shows that coherent multiple reflections
drastically enhance the probability of Andreev reflection.
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FIG. 2. Averaged contribution Jlv to the charge current of
trajectories involving JV reflections at the interface, calculated
as a function of W for several values of the voltage. The corre-
sponding energy is E =eV.
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Figure 2 ci so s ows /v caI h I calculated for V&0 (the corre-
F. = V). As a reference we define asponding energy =e

V. = —hi /el . Each curve represents thecritical voltage V,. = ~ (p- e, .

average over 2000 different sets of lengths L chosen ac-
cording to distri u iond' 'b t' (5). This averaging removes the
fluctuations in ~ associaI ociated with different choices o L.
As a result of the random path lengths, the constructive
interference is broken down with increasing V.

The evaluation o eI f th differential conductance dI(V,
8)/d V requires the calculation of the sum over all trajec-
tories with i erend'fl' t 1V The fraction F(A') of trajectories
which return to the reservoir after /V reflections can e
written as

(6a)

(6b)

hrou h the mid-where T„ is the transmission probability throug

die region,
w be ex ressed asThe differential conductance can now be expresse as

=G, g F (W)1,(e V, 8),G(V, 8

where, is eG the (Sharvin) conductance of t e interface.
h the voltage dependence of 6 V, B=

not shown), G(V) is independent of V. Note that t e

e V". at which the excess conductance is sup-

sed is substantially smaller thanpresse is su

the fact that the average length of an interfe p,erference loop is

much larger than I, for the values of T„shown. The
T' for suppression of the excesseffective temperature or

conductance can be estimate yd b kT' =eV,". .
From the random-walk simulations we find that or

T„=0.1, the rms average of the area is appis a roximately
icalg', t' = 12l . This yields an effective criticagiven by ~A-i

=4 /24l for the suppression of themagnetic field 8( = p

excess conductance [13].
F 4 hows the normalized excess idifferential con-igure s o

=[ (V=0) G(V» V, )]/G(V» V, ) at zeroductance g= 6
for three different valuestemperature as a function of

of T. For a given value of T, the excess coconductance first

increases w en „ is reh T duced below unity. This means

that the addition of scatterers increases t ee conductance.
Note also that g increases with decreasing T.

%e now compare our results wi pth the ex eriments of

k l. [4], who observed excess conductance in

Nb/I Ga As contacts. The authors exp ainenp. ~»p. 47

air currentresu ts in terms1 t s of a proximity-effect-in uce pai
iconductor is in the[l4, 15]. In our description the semiconductor is in e

( h h
'

I 6 =0) and the superconduc-normal state w ic imp ies

tor affects the transport exclusively by imposingosin boundary
rent Andreev andconditions (corresponding to phase-coheren n

normal reflection) on the wave functions.
f ath in their experiment is estimated to

be [l6] l, . =50 nm, and the Fermi velocity i I. =
m/s. For our c olce or e cer]

'
f r the transmission of the inter ace

(T=0.2) this corresponds to V;,
' =4 mV, anharrier = . is

ss conductance,
"' =0.06 T. In the experiments the excess con u

ressed for V» 0.5 mV, and for 8» 0.04 T. Given

the restrictions of our model, the latter resu is c
with the calcu ate d 8". . However, a discrepancy exists

etT
etween eb th calculated and experimentally observe

reaks downIt may be that phase-coherent transport rea s

d t the reduction of the inelasticfor large voltages, ue o e
i al1 h. Also our assumption of classica

ttering may not be justified. The typical size o ascat ering
tt

'

g center may well be smaller t an

avelength (XF =5 nm in Ref. 4
m tion ofI" inal y, we no et that because of our assump f

th semiconductor, the excess co-classical scattering in e s

u ce of a barrier at the inter-ductance vanishes in the a sence
ectedU noted, however, our model is expecte

fail for point scatterers with dimensions H ( y. . n

the scattering in the semiconduct is case e
An excesstreate in a ud fully quantum-mechanical way. .rface.mi ht then also occur for an ideal inter ace.conductance mig e

h ro ram of theThis work is part of the research program o e
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FIG. 3. Voltage dependence of the diAdifferential conductance
at zero temperature, calculated for several values of T„.

0.80.60.40.2

sion.

0
Il

uctance {see text);&s aFfa. 4. Normalized excess conduc a

function o „, orf T f three values of interfacee barrier transmis-

512



VoLUME 69, NUMBER 3 P H YSICAL REV I E% LETTERS 20 3ULv 1992

Stichting voor Fundamenteel Onderzoek der Materie
(FOM), which is financially supported by the Neder-
landse Organisatie voor Wetenschappelijk Onderzoek
(NWO).

[I] A. F. Andreev, Zh. Eksp. Teor. Fiz. 46, 1823 (1964)
[Sov. Phys. JETP l9, 1228 (1964)].

[2] P. C. van Son, H. van Kempen, and P. Wyder, Phys. Rev.
Lett. 59, 2226 (1987).

[3] The analogy with optical phase conjugation is discussed

by H. van Houten and C. W. J. Beenakker, in Analogies
in Optics and Microelectronics, edited by W. van Haer-

ingen and D. Lenstra (North-Holland, Amsterdam,

1991).
[4] A. Kastalsky, A. W. Kleinsasser, L. H. Greene, R. Bhat,

F. P. Milliken, and J. P. Harbison, Phys. Rev. Lett. 67,
3026 (1991).

[5] Van der Post et al. (unpublished) have observed excess

conductance at low voltage bias in interfaces between

niobium and (degenerately doped) silicon.

[6] When a current IIows, the reservoir is not in true equilib-

rium. However, the voltage drop inside the reservoir re-

gion can be described by an Ohmic series resistance.
[7] This barrier can be due to a Schottky barrier, or it may

result from the Fermi wave number mismatch between

the superconductor and the semiconductor.
[8] The barrier is extended along the y direction, and k» is

conserved. The S matrix describes the scattering of the

x-dependent part of the wave function.

[9] G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys.

Rev. B 25, 4515 (1983), calculated the normal and An-

dreev reflection probabilities for a delta-function potential

barrier.
[10] C. W. J. Beenakker and H. van Houten, Phys. Rev. B 43,

12066 (1991).
[11]J. Herath and R. Rainer, Physica (Amsterdam) 161C,

209 (1989), have studied the effect of point scatterers
near a normal-metal-superconductor interface.

[12] In Eqs. (2) and (3) the energy dependence of the phase
shift associated with Andreev reflection is not taken into
account. This is allowed since we restrict ourselves to en-

ergies E ((A.
[13]The effects of a finite E or the presence of B are not ex-

actly equivalent. A finite E)0 results in a positive h, p.
However, a magnetic field can produce both a positive as
well as a negative h, it), depending on whether the electrons
move around the enclosed flux in a clockwise or counter-
clockwise direction.

[14] V. B. Geshkenbein and A. V. Sokol, Zh. Eksp. Teor. Fiz.
94, 259 (1988) [Sov. Phys. JETP 67, 362 (1988)].

[15] An alternative explanation has been formulated by A. V.
Zaitsev, Pis'ma Zh. Eksp. Teor. Fiz. 51, 35 (1990) [JETP
Lett. 51, 41 (1990)]; Physica (Amsterdam) 185-189C,
2539 (1991); and A. F. Volkov and T. M. Klapwijk (un-
published).

[16] A. W. Kleinsasser, T. N. Jackson, D. Mclnturff, F. Ram-
mo, G. D. Pettit, and J. M. Woodall, Appl. Phys. Lett. 55,
1910 (1989).

513


