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Conductance Fluctuations and Chaotic Scattering in Ballistic Microstructure
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We report detailed measurements of the low-temperature magnetoconductance in ballistic microstruc-
tures in the shape of a "chaotic" stadium and a circle with quantum-point-contact leads. Both struc-
tures show large, aperiodic, conductance fluctuations as a function of perpendicular magnetic field, and a
zero-field resistance peak indicating geometry-dependent enhanced backscattering. Power spectra of
fluctuations are consistent with recent semiclassical analyses based on quantum chaotic scattering, with

the circle showing enhanced high-frequency spectral content.

PACS numbers: 73.20.Dx, 05.45.+b, 72.20.My, 73.20.Fz

The advent of precision submicron lithography provides

a means of investigating electron transport in the ballistic

regime, where the mean free path of the electrons exceeds
the size of the device [1,2]. Recent experiments [3] on

semiconductor microstructures have uncovered a variety

of interesting transport "anomalies" all of which demon-

strate the importance of geometrical features in deter-

mining transport in the ballistic regime. These anomalies
have been analyzed quite successfully in terms of classical
"billiard ball" models which consider transport to be

overned by the deterministic scattering of classical elec-governe
trons from the confining walls of the microstructure ~,[2 4].
At very low temperatures (T+0.5 K) quantum interfer-

ence eAects become important, giving rise to large fluc-

tuations in transport [5], reminiscent of universal conduc-

tance fluctuations (UCF) [6]. Quantum interference

efTects in the ballistic regime are not described by classi-

cal billiard ball models [2,4], nor are they addressed by

the current theories of UCF [6] and weak localization

[7], which are specifically suited to disordered metallic

systems in which electrons move difl'usively.

Recent theoretical work [8-11] has addressed the sta-

tistical properties of fluctuations in ballistic transport
within the semiclassical framework of quantum chaotic
scattering [12]. In this formulation, electrons follow clas-

sical trajectories and move ballistically between wall col-

lisions, but also carry phase information that depends on

the Fermi energy and is afI'ected, for instance, by a mag-

netic vector potential as in the Aharonov-Bohm (AB)
eflect. Transport is then treated as a scattering problem

characterized by a matrix t„ofcomplex transmission

amplitudes connecting incoming and outgoing channels.
When the associated classical scattering is chaotic, t„„,is

found to possess certain universal statistical properties
[8-101 that can be related to the statistics of conductance
fluctuations through the Landauer formula, ( = (2e
h)P „=~It„,„I,where 1V is the number of quantum

channels in the incoming and outgoing leads fi 1 3&. A

semiclassical analysis along these lines has also recently
been applied to fluctuations observed in the reflectivity of
"chaotic" microwave cavities [14].

In this Letter, we experimentally investigate the low-

temperature magnetotransport of ballistic semiconductor
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FIG. 1. Resistance R as a function of perpendicular magnet-
ic field B for (a) stadium 1, (b) circle I, both with N= I fully

transmitted modes in leads. Insets: Zero-field peaks at 20 mK
(solid) and 0.6 K (dashed), and electron micrographs of de-
vices, with l pm bar for scale.

"quantum dots. " These submicron structures, shown as
insets in Fig. l, exhibit aperiodic conductance fluctua-
tions as a function of an applied perpendicular magnetic
field for modest fields, 8 (0.3 T. We find that po~er
spectra of these fluctuations agree well with predictions of
semiclassical chaotic scattering theory [8,9], and also re-
veal significant dependences on geometry. We also ob-
serve a resistance peak at zero field that suggests a ballis-
tic enhanced backscattering eAect analogous to weak lo-
calization in disordered systems. In addition, we see
shape-dependent periodic components in the transmission
which are signatures of unstable periodic orbits in the
structures. Finally, we observe that the amplitude of the
fluctuations are not "universal" in that they are smaller
and increase with the average conductance as the point
contacts are opened.
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The specific shapes of the microstructures, denoted
"stadium" [Fig. 1(a)]—semicircles connected by straight
edges —and "circle" [Fig. 1(b)] were chosen to em-

phasize the connection between ballistic transport and
billiard models of quantum chaos [14] and to allow a
comparison of fluctuation phenomena in ballistic struc-
tures whose classical scattering in the corresponding
idealized structures is chaotic (the stadium) versus non-

chaotic (the circle). It is interesting to note that standard
UCF can also be considered an example of quantum
chaos associated with complex electron trajectories
caused by randomly located scatterers [6]. This experi-
ment illustrates that similar fluctuation phenomena can
be produced by quantum chaos associated with the shape
of the conductor; these fluctuations would be present in

ideal conductors even in the absence of impurity scatter-
ing.

The quantum dots were fabricated using electrostatic
gates on the surface of a GaAs/Alp 3Gap7As heterostruc-
ture. The material was grown with the two-dimensional
electron gas (2DEG) very close to the surface (420 A to-
tal distance, with Si 8' doping, ND=6x10' cm, set
back 200 A from the 2DEG), giving a steep-walled po-
tential from the gates at the level of the 2DEG and

preserving the precise dot geometry. Gates are Au/Cr
(80 A/20 A) patterned using electron-beam lithography
and liftoff. Van der Pauw transport measurements at 20
mK with gates grounded gave a sheet density n, =3.8
x 10" cm and mobility of 265000 cm /Vs, from
which we infer an elastic mean free path of 2.6 pm—several times the size of the structures. At low temper-
atures, small-angle scattering due to charged impurities
located outside the well is important [15]. While the as-
sociated potential fluctuations in the plane of the electron
gas are largely screened, electron trajectories are bent by
the induced density fluctuations as well as by the residual
unscreened potential [16]. As shown below, the influence
of dot shape is robust to these small-angle deviations.

The stadium and circle are fabricated close together
(10 pm separation) on a single sample and simultaneous
four-probe measurements of the two devices are made via
six In Ohmic contacts at the edges of the sample. Data
from two nominally identical samples, denoted 1 and 2,
are reported here. The lithographic dimensions of the
quantum dots are as follows. Circle, radius 0.44 pm; sta-
dium, length 1.2 pm and width 0.60 pm; all lead widths
are 0.14 pm. Effective areas of the confined 2DEG's are
smaller than these lithographic dimensions because of
edge depletion, and can be measured directly from peri-
odic AB conductance oscillations [17] at larger fields,
B) 1 T, where well-formed edge states exist. The areas
inferred from AB oscillations are 0.41 pm for both the
circle and the stadium. This size sets two characteristic
magnetic fields, a characteristic field for quantum in-
terference Bq -&p/area =10 m T (where @p is the quan-
tum of flux h/e =4.14x10 Tpm ), and a classical
characteristic field B,i —0.3 T, for which the classical cy-

clotron radius l,„d= h(2zn, ) 'i /e8 is comparable to the
size of the structure.

The leads in each device form quantum point contacts
oriented at 90 to reduce transmission via direct trajec-
tories. The number N of transverse modes in the leads
can be inferred from the zero-field conductance G(0) as a
function of gate voltage Vg, which shows oscillations over
the range Vg ——0.3 V to ——0.6 V. Because the leads
are rather narrow, N ~ 3 for all leads, consistent with es-
timates based on the depleted lead width and Fermi
wavelength kF =(2z/n, ) ' =41 nm [2].

Transport measurements were carried out in a dilution
refrigerator using standard ac lock-in techniques. Cur-
rent sources of either 0. 1 to 0.25 nA at 11 Hz were used,
depending on the resistance of the device, and showed no
significant difl'erence. Each device has two point contacts
and is measured in a four-probe configuration to avoid
contribution from the electrical leads. Because nearly all
of the measured voltage is dropped across the quantum
dot, one can consider this configuration to be a two-probe
measurement of the dot. This is significant in considering
the + B symmetry of the magnetoconductance described
below.

Resistances R(8) [=G '(8)] of stadium 1 and circle
1 as a function of perpendicular magnetic field are shown
in Fig. 1. For the gate voltages used in this sweep (see
Fig. I) the number of fully transmitted modes in each of
the leads is N=l, with some tunneling of the second
mode contributing to the conductance. Both the stadium
and the circle show large aperiodic resistance fluctuations
at low fields, i8i &0.3 T, which are reproducible to
within 2% as long as the sample is kept at low tempera-
ture. Depending on the particular gate voltage, these
fluctuations may persist to higher fields (i8i ) 1 T),
gradually becoming dominated by a single period due to
AB interference of edge states [17]. The traces in Fig. 1

are essentially symmetric, R(8) = R( —8), which is ex-
pected for a two-probe measurement [13]; small devia-
tions from symmetry are presumably due to voltage drops
in the bulk 2DEG, away from the microstructures.

Both traces in Fig. 1 show narrow resistance peaks at
8=0 which persist to above 0.6 K (see insets). At other
gate voltages as well, R(8) is always found to be a local
maximum at B=O whenever N &1, though zero-field
peaks are not always as strong as those in Fig. 1.
Specifically, the zero-field peak becomes less pronounced
as the leads are opened. The physical origin of the zero-
field peak is presumably coherent backscattering associat-
ed with interference of time-reversed paths, as for weak
localization in diffusive electron systems. We emphasize,
however, that no detailed theory of enhanced backscatter
for a ballistic quantum dot geometry has appeared. The
FWHM's of the zero-field resistance peaks (see Fig. 1 in-
sets) are 4 mT for stadium 1 and 1.5 mT for circle 1,
comparable to the estimate Bq /2m= 1.6 mT based on
time-reversed path arguments, assuming loop areas on
the order of device size. Notice that the zero-field peak is
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considerably narrower for the circle indicating that the
flux enclosed by a typical closed-loop trajectory is larger
for the circle than for the stadium. A similar geometrical
eff'ect also appears as enhanced high-frequency content in

the power spectrum of the circle (discussed below) and is

associated with large-area circulating orbits [11].
Broad resistance minima around 8—~0.27 T for the

circle Fig. 1(b)] can be interpreted as due to the curva-
ture of electron trajectories. When l,„,~

equals the dot ra-
dius r the point contacts are connected by a directly
"aimed" (though not focused) trajectory. This feature
allows us to measure the eA'ective sheet density nd, t

within the dot Usi.ng r =0.36 turn (from AB oscillations)
gives nd, t=3.5x10" cm, a slight reduction from the
bulk n, =3.8x10'' cm . The absence of a similar
feature for the stadium is not a general observation;
characteristic dips in R(8) are seen for the stadium at
other gate voltages. We expect, however, that this
feature will be stronger in the circle, since the condition

l&yz[ r causes electrons originating in either lead to ar-
rive at the other point contact, either directly or via two
wall bounces. No such "double aiming" condition exists
for our stadium.

Next we consider the statistics of the conductance fluc-

tuations by evaluating the power spectrum S of 8 (8)
the 1]e uctuatlng part of the dimensionless conductance

g 8) =(h/e )G(8) = (25.8 kQ)G(8). Conductance
[]uctuations Bg(8) are extracted from g(8) by subtract-

ing a third-order polynomial fit to g(8). This suppresses

large slowly varying field dependences in conductance,
and afIects only the lowest-frequency component f 5
H

so g.
euristically, the abscissa of the power spectrum, the

magnetic "frequency" f (in units of cycles/T), can be ex-

pressed as an area by the AB relation, area =@of, so the

spectrum measures the distribution of flux areas of trajec-

tories contributing to conduction [18]. Averaged power
spectra [19] for the two samples are shown in Fig.
2 for the case of N=3 transverse modes in the leads.
Also shown is the autocorrelation function C(/38)
= 6g(8)6g(8+/rrB)), which is the Fourier transform of

Semiclassical theory [8,9] predicts the universal form
C 48) =C(0)/[1+(AB/aNo) ] assuming an exponen-
tial distribution of classical trajectory areas A within the
structure, N(A) ccexp( —2za~A~) [8]. This form for
C AB)C ) should apply when the classical scattering is

chaotic (which requires ~8~ & B,~
for the stadium, and in

principle does not apply to the circle) and when the num-

ber of modes in the leads is large, N)&1. It is expected
[9,12], however, that this form will be reasonably accu-
rate in the few-mode case. The associated prediction for
the power spectrum is

S (f) =S (0)[1+(2na@o)f]

where, again, f is the magnetic frequency in cycles/T. A
two-parameter least-squares fit by Eq. (1) using the sta-
dium spectrum gives the solid curves in Fig. 2. These fits

yield a characteristic field a@o=3.6 mT (3.9 mT), com-
parable to the width of the zero-field peak, and a ' =1.2
pm (1.1 ium ) for stadium 1 (2). Expressin a '

in

terms of the area of the stadium gives a '/area=2. 8

t. .6&, consistent with numerical results of Jalabert,
Baranger, and Stone [8]. Note that the form of Eq. (1)
is in good agreement with the measured stadium spectra
over roughly 3 orders of magnitude in power.

At low frequencies, f & 250 cycles/T, the circle spec-
trum coincides with the stadium spectrum and is also
consistent with Eq. (1). Above this frequency, the circle
spectrum lies significantly above the theoretical curve and
the stadium spectrum. This difI'erence was also observed
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FIGG. 2. Averaged power spectra Sg of conductance fluctua-

tions Bg(B) for stadium (solid diamonds) and circle (open cir-

cles) with N —3 transverse modes in leads [20]. (a) Sample 1;

(b) sample 2. Solid curves are fits of semiclassical theor, E .

(l) t), o stadium data. Insets: Autocorrelation C(h, B) of stadi-

um (solid) and circle (dashed) for 0.0l T & B &0.29 T, with

normalization C (0) =var fg (B)].

FIG. 3. Low-Low-frequency structure appears in un averaged
spectra of low-field Bg(B) when plotted on a linear scale [20].
All data for N —3 transverse modes in leads. Insets: Sym-

metric periodic orbits of (4 bounces with nonzero flux for cir-
cle and stadium, with associated frequencies indicated on

graphs. Note that many other closed orbits exist in both struc-
tures [22].
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in a recent theoretical study comparing chaotic and non-

chaotic junctions [11] and can be attributed to the nonex-

ponential distribution of areas in the circle. In particular,
the circular billiard conserves angular momentum, thus
trajectories will sweep out areas at a constant rate rather
than randomly as for chaotic billiards [10,11]. This leads
to an enhanced number of large-area (i.e., high-fre-

quency) trajectories in the circle. In real devices, disor-
der will bend trajectories so that angular momentum will

not be strictly conserved. However, for predominantly
small-angle scattering, the argument for an enhanced
number of large-area trajectories in the circle remains

applicable.
The averaged spectra in Fig. 2 only address statistical

aspects of conductance fluctuations. Geometry-specific
structure appears at low frequencies when the spectra are
not averaged [19],and are plotted with linear ordinate, as
shown in Fig. 3. These features are also visible as period-
ic oscillations in R(8) (Fig. I) and in C(AB) (Fig. 2, in-

set). The large spectral features are a clear signature of
the ballistic regime [5], where transport can be dominat-
ed by a few preferred trajectories with well-defined areas.
This phenomenon is analogous to "scarring" of the wave
function by periodic orbits in closed billiards [20]. Figure
3 shows that the largest spectral peaks are concentrated
below f=100 cycles/T, corresponding to the dot area,
and that spectral peaks appear at similar frequencies in

the two samples though with diA'erent amplitudes. In

principle, large spectral peaks of this sort can be associat-
ed with simple periodic orbits (insets of Fig. 3). With the
present data, however, we do not believe that it is possible
to specifically assign the peaks in Fig. 3 to particular or-
bits. Such an assignment is complicated by disorder,
field-dependent curvature of electron trajectories which
limits the usable field range, and how well the periodic
orbits couple into the leads of the device.

Finally, we observe that the fluctuation amplitude is
not independent of the average conductance (g) through
the device, but increases with conductance as the leads
are opened by changing gate voltage. For the circle
and stadium in both samples, rms(kg)-0. 1(g) for 0.5
& (g) & 3, and rms(8g) vs (gl appears slightly concave

down. This dependence is characteristic of laser speckle
[21], and contrasts UCF, where rms(6g) —I independent
of (g).
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