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Asymptotics of Level-Spacing Distributions for Random Matrices
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Asymptotic formulas for the probability of Bnding exactly n eigenvalues in an interval of length s,
for large s and fixed n, are given for random matrices taken from the Gaussian ensembles (P = 1, 2, 4).
These exact results are compared with the predictions of a continuum Coulomb gas model due to
Dyson.
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The theory of random matrices as developed by Hsu,
Wigner, Dyson, Mehta, and others found its first appli-
cation to physics in the level-spacing fluctuations of the
excitation spectra of various nuclei [1]. More recently,
the various level-spacing distribution functions for these
random matrix ensembles have been shown to be good
models for the level-spacing Quctuations of the spectra
for quantum chaotic systems [2]. Thus it is important to
know precisely the theoretical predictions of the various
random matrix ensembles. Of course, there is a great deal
known concerning the theory of random matrices, see,
e.g. , [3—5], but even so the asymptotics of various level-

spacing distribution functions have not been computed.
It is the purpose of this Letter to give new asymptotics
formulas for the level-spacing distributions Ep(n; s) for
fixed n and large s for the three ensembles P=l, 2, and
4.

Recall that Ep(n; s) is the probability that an inter-
val of length s contains exactly n eigenvalues where the
matrix is chosen from the Gaussian ensembles P = 1

(Gaussian orthogonal ensemble), P = 2 (Gaussian uni-

tary ensemble), P = 4 (Gaussian sympletic ensemble)
or from the corresponding circular ensembles. These
probabilities are all expressible in terms of either Fred-
holm determinants or derivatives of these determinants
[3, 5]: Let K be the integral operator on 12([0,ms])
with kernel K(x, y) = —sin(x —y)/(x —y), Ky the
integral operators with kernels K(x, y) 6 K(x, —y) and
D(s; A) = det(1 —AK), D~(s; A) = det(1 —AK~) the
respective Fredholm determinants, 0 ( A & 1, then

E (n; s) = Ei(2n; s) + Ei(2n+ 1; s), n & 0, (3)

and

E4(n; s) =
2 [E+(n; 2s) + E (n; 2s)], n & 0 .

Jimbo et al. [6] have shown that

D(s; A) = exp~
' dx ~,

( ' cr(x; A)

4 o x )

(4)

where o(x; A) is the solution, holomorphic at the origin,
to

(xcr")2+ 4(xcr' —cr)[xcr' —cr+ (cr') ] = 0, (6)

Introducing

8 /' d2 ~
1/2

ln D(x; A) dx
~2 p ( dx~ ' j (7)

d
cry(x; A) = x—lnDg(x/n-, A),dx

the differentiated version of (7) is

cr (x; A) —cr+(x; A) 2 d cr(x; A)

x dx x (9)

Since we want derivatives of the above Fredholm deter-
minants, we introduce

satisfying the boundary condition o (x; A) ~ ——"x as x ~
0 and ' =

&
. The Dy(s; A) are given by

1
ln D~(s; A) = —ln D(s; A)

(—1)"8"D(s; A)

n! BA"
8"cr(x; A)

OA A=1
(10)

If we define the analogous quantities E~(n; s), then [3, 5]
Eg (0; s) = E+ (0; s),

E+(n;s) =Eq(2n;s)+Eq(2n —1;s), n &0, (2)

and the analogous quantities cr~ „(x).
Before presenting our results on the asymptotics of

Ep(n;s) for fixed n & 0 and large s, we briefly recall
the situation for n = 0:
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122 1 1 1
ln Dy(s; 1) = ——7r s p —7rs ——ln 7rs 6 —ln 2

16 4 8
1 3+—»2+ -I,"(-1)+ o(l)12 2

as s —+ oo where ( is the Riemann zeta function. This
result, along with a systematic procedure to calculate the
correction terms, was first derived by Dyson [7]. Dyson's
method is not entirely self-contained in that he must use
a result from [8] to fix the constants k4 ln2, and he
uses a scaling argument (of the type discussed below) on
a result from [9) to Fix the constant i2 ln2 + zj,"(—1).
We note that even though the result [9] is rigorous, the
scaling argument must be considered heuristic since it
uses the statement of the theorem in a region where it
has yet to be proved.

Although known to the experts, we would like to point
out the sensitivity of these results to the parameter A be-
ing set to 1. This dependence is best discussed in terms
of the differential equation (6) where it is an instance
of the general problem of connection formulas. In this
context the problem is, given the small x boundary con-
dition, to find asymptotic formulas as x ~ oo where all

constants not determined by a local analysis at oc are
given as functions of the parameter A. If we assume an
asymptotic solution for large z of the form rT(x) az",
then (6) implies either p = 1 or p = 2 and if p = 2 then
necessarily a = —4. The connection problem for (6) has
been studied by McCoy and Tang [10] who show that
for 0 ( A ( 1 one has o(x, A) = a(A)x+ b(A) + o(l) as
x ~ oo with a(A) = —ln(l —A), b(A) = 2a (A). Since
these formulas make no sense at A = 1, it is reasonable to
guess that o (x; 1) —4z2. This corresponds to just the
first-order asymptotics in (11). Given this, and only this,
it is a simple matter using (6) to compute recursively the
correction terms to this leading asymptotic behavior:

1 2 1 ~ C2no.(z;1) = --x ——+ ) (12)
4 4 &2n

n=1

(c2 = —4, c4 = —2, etc.). Using (12) in (5) and (7) one
can efficiently generate the large s expansions for D(s; 1)
and Dy(s; 1) except that neither the constant involving
the zeta function nor the constants +4 ln2 are deter-
mined. We mention that for 0 & A & 1 the asymptotics
of D(s; A) are also completely known [10, 11].

We now state our results: First, for n ) 2

n! exp(nx) 1 1 7
a„(x) =—

(23~)n/2 zn/2 —i 1+ —(7n —4) —+ (7n +12n —16)—+O~ —
~x 128 x2 (x3)

as x ~ oo. For n = 1, 2 the above is correct for the leading behavior but for n = 1 the correction terms have

coefficients —and izs, respectively, and for n = 2 the above formula gives the coefficient for 1/x but the coefficient

for 1/x2 is 32. Similarly, for n ) 1 o+ „(x) has the expansion beginning exactly as does the right-hand side of (13)
and

n! exp(nx) 1 1 1 1 1&
~-, (x) =-

(2r~)~/2 x3~/2-i 8 z l 28
1+ —(19n —12) —+ (361n + 204n —304) —+ 0

X2 X3 j
(14)

For o'~ i(x) the above formulas are correct except that the coefFicients of the 1/x terms are i23 and i23, respectively.

Introducing

rp(n;s) = ', P =1,2, 4, +, —,Ep(n; s)
Ep0;s '

we have

r2(n;s) = B2,„,/ 1+ —(2n +7) —+ (4n +48n +229) 2 +0] —
3

exp(nn's) n 2 1 n 4 2 1 /'1 )
sn'I 2 8 vrs 1 mrs 2 (s3)

where

"'-"/'~-f"'+"&/2 (n 1)~ (n 2)!.. . 2~ 1!,

(15)

exp(n~s) 3 5 1
r+(n;s) =B~,„, , 1+n n, p n+ ——

Sn +n 2 4 8 mrs

5 4 3 2 1 1
+ (64n ~96n + 276n ~ 220n + 297n p 116) + 0

128 (7rs)2 s3 (16)

with

B+,„——7r
" 2 " +"/ (2n —2)! (2n —4)! 2!0!,

From (2)—(4) and (16) it follows that as s ~ oo

B „=7r " 2 " / (2n —1)!(2n—3)! . . 3!1!.

E (0;s)
ri(2n; s) r+(n; s), ri(2n+ 1; s) —r (n; s)

E+(0; s
{17)
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and

L,oy ——0,
where

= x o"D + [4x(xo' —cr) + 6x(o')z —4oo'] D

—2[(o')~ + 2(xo' —cr)]

and D = &" . Using (12) we find two linearly indepen-
dent solutions to (19), sy(x), which for large x behave
as sy(x) vxe+*. Hence oi(x) = cis+(x) + cps (x),
but the constants ci and cz are not determined from this
analysis. Note this also shows, at least heuristically, that
in "going beyond all orders" in (12) there will be terms
proportional to s (x).

If we differentiate (6) n times with respect to A and
then set A = 1, we obtain the nth variational equation
for o„(x):

L,cr„(x) = f„(x,op, . . . , o„ i), (20)

where one can easily write out a formula for f„By.
examining the small 2: expansions, one can show that the
solution to (20) contains no homogeneous part. Thus we
have a recursive set of equations for the o„(x) with only
two undetermined constants.

We now describe one method to determine the constant
ci. First observe that (8/BA) ln D(s; A) = —tr(Rp),
where Rg is the resolvent operator. We first introduce
the discrete analogs of the operators K and Ri. As usual

T„[&p] denotes a Toeplitz matrix of order n+1 with gener-
ating function p and yA the characteristic function of set
A. Think of n ) 0 as small but, for the moment, fixed;
E is the major arc of the unit circle joining e' with e '
and e is the complementary minor arc (e contains the
point 1). The matrix T„[y, ](I—T~[y, ]) is the dis-
crete analog of the resolvent operator Ri = K(I —K)
We claim that for fixed n and n —+ oo we have

r4(n; s) r (n; 2s) .

Though (13) is proved for n E N, (14) and (15) have
been proved only for 1 & n & 10 and (16) for 1 & n & 9.
The difficulty in proving (14)—(16) for general n is due to
the large amount of cancellation.

There is further support for the validity of these results
for all n. Formula (5.4.30) of [3] expresses rq(n; s) as a
sum of products involving the eigenvalues of K; there is
a single dominant term in this sum, which corresponds
to the n largest eigenvalues, and substituting Slepian's
asymptotic formula for the eigenvalues [(12.1.15) in [3]]
into this term gives the first-order asymptotics in (15).
Although this is quick it would be difficult to make a
proof out of it.

We now sketch our methods. DifFerentiating (6) with
respect to A and setting A = 1, we obtain the first varia-
tional equation for oi(x):

(21)

2'
tr T„[ip] ' = — 2zP„'(z)P„(z)—(n —1)~P„(z)

~

de .
F Q

(22)

In our case p = y~ and it is well known that polyno-
mials like this have moderate size on the support of the
weight function and are much larger (when n is large)
on the component of its complement which contains oo.
Thus the major contribution to the integral in (22) will

come from the minor arc e~. As our first leap of faith,
we accept that the first-order asymptotics of (22) are ob-
tained by using the first-order asymptotics of P„valid ofF

E and integrating the result over e . The asymptotic
formula is

where 4 maps the complement of E in the complex
plane to the exterior of the unit circle, with oo ~ oo,
and where the constants C„are adjusted to conform to
the normalization of P„(z). The function C(z) can be
found explicitly, the first-order asymptotics of D„ i/D„
are known, and an asymptotic analysis of the integral
(22) then gives (21).

The big assumption is, of course, that scaling makes
sense, i.e., that if we formally set nn = mrs in (21) and
take the limit as n —+ oo, a. ~ 0 with nn )& 1 we get
a correct asymptotic formula for tr K(I —K) . Doing
this gives

e7t's

trK(I —K) (, s ~ oo. (23)

where r. = tan(a. /2)+sec(o. /2) and e~ is a constant which

approaches 0 as 0, ~ 0. Notice that the trace in question
equals

tr(T„[y@ ]
—I) = trT„[y@ ]

—n —1,
so it suffices to show that trT„[yE.]

' has the claimed

asymptotics. We will use the fact that this trace is rep-
resentable in terms of the orthogonal polynomials on
E The. reason for this is the following: A theorem of
Gohberg and Fel'dman [12] tells us how to find the entries
of T„[rp] i for general p defined on the unit circle once we

know the vectors T„[ip] 'vp and T„[ip] vp, where vp is

the first vector of a standard basis and P(z) = p(z ). If
Cp is non-negative the components of these vectors are the
coefficients (and their complex conjugates, respectively)
of the suitably normalized orthogonal polynomial P„(z)
associated with the weight function &p. We deduce that

if the highest coefficient of P„(z) is (D„ i [tp]/D„[Ip])
where D„[y] = detT„[&p], then
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Observe this identifies the constant ci as —1/(2 ~

vier).

Results for n = 1 follow from this and from (9). State-
ments about general n are proved by an analysis of the
recursion relations arising from (20) and from differenti-
ating (9) n times with respect to A. When we could not
prove a statement for general n, the recursion relations
were programmed using the software MATHEMATICA.

As we pointed out, two assumptions were made in the
above analysis. Rather than attempt to fill these gaps,
one of us [13] has given a completely diferent analysis
of the asymptotics of the trace of the resolvent work-
ing directly in the continuous setting. This analysis is
completely rigorous and gives the result (23). Further-
more, this continuum approach also gives —" lnD(s;1)

2
88—7r s/4 which proves o'(x; 1) —x /4 as x ~ oo thus

providing a self-contained derivation (up to the constant
involving the zeta function) of the asymptotics of D(s; 1)
starting with (5) and (6). In addition, this approach also
gives information in the many interval case, where N
nonoverlapping intervals of lengths sq, . . . , s~ are given
and we seek the probability that exactly n& eigenvalues
are in interval 1, . . . , n~ eigenvalues are in interval ¹

Upon communicating some of our results to Dyson, one
of us received from Dyson a series of letters [14] in which
he constructs a Coulomb gas model [3] for EI3(n; s). In
this continuum model,

an energy effect and the power of s involving the n expo-
nent is an entropy egect. Finally, the continuum model
also makes a prediction (for large n) for the Bp „'s H.ere
we find that the ratio of the exact result to the contin-
uum model result is approximately n i~i~ for P = 2 and
n '~24 for P = 1, 4. This prediction of the continuum
model is better than it first appears when one considers

2 2that the constants themselves are of order n" ~2 (P = 2)
and n" (P = 1,4).
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7c s Xs 1

16 2 4
(n + b') + —n—(n + 6)

1 (4vrs l 1
y —n(n+ 26) in[

4 gnat 2
(24)

with 6 = 1/2 —I/P.
We now compare these predictions of the continuum

model with the exact results. First of all, this contin-
uum prediction does not get the s i~4 (for P = 2) or
the s i~s (for P = 1, 4) present in all Ep(n; s) that come
from the ln mrs term in (ll). Thus it is better to compare
with the continuum prediction for rp(n; s). We find that
the continuum model gives both the correct exponential
behavior and the correct power of s for all three ensem-
bles. Thus the power of s involving the n2 exponent is

Ep(n; s) = exp[ PW——(I —P/2)S],

where W = —
2 jJ p(x)p(y) ln[x —y] dxdy is the total

energy, S = jp ln pdx is the entropy, p(x) = p(x) —I,
and p(x) is a continuum charge distribution on the line
satisfying p(x) ~ 1 as x ~ koo and p(x) ) 0 every-
where. The distribution p(x) is chosen to minimize the

free energy subject to the condition f'~ p(x) dx = n.
Analyzing his solution in the limit 1 « n « s, Dyson
finds Ep(n; s) exp( —PW, ), where
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