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Ab Initio Studies on High Pressure Phases of Ice
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The pressure-induced transition of H20 into the ice X phase, characterized by symmetric hydrogen
bonding, is studied using ab initio molecular dynamics combined with ultrasoft pseudopotentials. A

good description of the hydrogen bond is obtained only after gradient corrections to the local-density ap-
proximation are included. The transition into ice X is predicted at 49 Gpa, in good agreement with ex-
periment, when proton quantum Auctuatlons are treated within mean-field theory. Molecular-dynamics
simulations show that a mode-softening description of the transition is appropriate.

PACS numbers: 64.70.Kb, 62.50.+p, 63.20.—e, 64.30.+t

H20 ice has an unusually rich phase diagram [1). The
dominant hydrogen-bonding interactions give rise to a se-

quence of rather open structures which become more

close packed with increasing pressure. Nevertheless, the

phases ice I through ice IX, which occur at pressures up

to a few tens of GPa, all still have intact water molecules

as their basic building blocks. At a sufficiently high pres-

sure, the molecular picture is expected to break down en-

tirely. For the moderately high pressure ice VII and VIII
phases, it is found that the H atoms become more

symmetrically bonded with increasing pressure; in fact
the covalently bonded 0-H distance increases while the

hydrogen-bonded O-O distance decreases with increasing

pressure [2,3]. Thus, in the simplest picture, the transi-

tion would occur by having H atoms shift to the fully

symmetric positions midway between the two neighboring

0 atoms, leaving the oxygen lattice intact. Such a specu-

lative phase, in which the distinction between the covalent

and hydrogen bonds has been eliminated, is called ice X.
Despite considerable discussion in the literature [4-9],

there is to date no compelling direct evidence for the ex-

istence of ice X. Experimentally, Raman spectra of ice

VIII up to 50 GPa at 100 K demonstrate the appearance
of a new band above 40 GPa [4] which could reIIect such

a transition; and Brillouin scattering studies up to 67 GPa
at 300 K also give an indication of a transition at 44 GPa
from an anomaly in the behavior of the longitudinal

sound velocity [5]. Earlier work based on extrapolation

of Raman spectra from lower pressures at room tempera-
ture also suggested that a symmetric hydrogen-bond

structure might form in ice VI I at pressures of about

75 ~ 20 GPa [6]. However, little is experimentally

known about the positions of the protons in the high pres-

sure phase, because direct measurements like neutron or

electron diAraction are difticult. Theoretically, studies

based on empirica1 interatomic potentials have supported

the notion of a transition to the ice X structure. An early
theoretical calculation by Holzapfel [7) predicted a tran-

sition to symmetric hydrogen bonding in ice VII at pres-

sures between 35 and 80 GPa. The interaction of the hy-

drogen atoms with the two nearest-neighbor oxygen

atoms was approximated by equivalent Morse potentials.

Later, a calculation by Stillinger and Schweizer [8] pre-

dicted a transition at roughly 60 GPa. This work includ-

ed a treatment of the quantum-mechanical many-body

problem for coupled proton motions along hydrogen

bonds. A more recent estimate by the same authors

[9] puts the transition at about 45 GPa. However, to

our knowledge there have been no previous ab initio

quantum-chemical or density-functional calculations on

th&s system.
In this Letter, we describe first-principles calculations

of the structural properties of H20 ice in the high pres-

sure region relevant to the ice X transition. We employ

the Car-Parrinello ab initio molecular-dynamics ap-

proach [10] to density-functional theory. The treatment

of the oxygen atoms, which is usually problematic within

plane-wave pseudopotential approaches, is rendered tract-

able by adopting the ultrasoft pseudopotentials proposed

by Vanderbilt [11]. Perhaps surprisingly, we find that

the local-density approximation (LDA) must be aug-

mented with gradient corrections for a proper description

of the hydrogen bonding. Then, we confirm the existence

of a transition into the ice X structure, and predict the

transition pressure to be about 49 GPa, consistent with

experimental indications [4,5]. Our estimate of the tran-

sition pressure includes a mean-field treatment of the

quantum fluctuations of the proton positions. Finally, we

study the nature of the transition by carrying out mole-

cular-dynamics simulations of the dynamics of the con-

stituent atoms, and verify a mode-softening picture of the

transition.
The details of our calculations are as follows. The

pseudopotential for oxygen has cutoft radii of 1.5 a.u. for

the valence wave function and 1.2 a.u. for the local poten-

tial; for hydrogen the corresponding values are 0.8 and

0.6 a.u. The charge augmentation functions Q;, (r) [11]
are pseudized using a method similar to that of Rappe et
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al. [12] to insure that Fourier components of the density
above twice the cutoft for the electronic wave functions
are not needed. The electronic states are expanded in

plane waves with kinetic energy up to 20 Ry. Our earlier
work has demonstrated that converged results can al-

ready be obtained with such a small cutoA when the new

pseudopotential approach is used [13]. The calculations
are carried out on a 16-molecule supercell, as depicted in

Fig. l. Only the I point is used for the Brillouin-zone
summations. In ice VII and ice VIII, which are the
highest pressure phases with intact water molecules as
building blocks, the oxygens take the sites of a bcc lattice
as sho~n in Fig. 1. Equivalently, this structure can be re-
garded as two interpenetrating diamond-structure sublat-
tices. In ice VII, the protons are disordered within
Pauling's ice rules [14] while in ice VIII, the protons
show an antiferroelectric order where each diamond sub-

lattice is ferroelectric with the orientation of the polariza-
tion vector opposite to that of the other sublattice. Ex-
perimentally, a tetragonal distortion along the direction
of the polarization vector is observed for ice VIII. How-

ever, this distortion is quite small (about 1%), and we

therefore expect to capture the essential physics of the
transition with our approximation of a precisely cubic su-

percell.
We have found during this work that the LDA alone is

inadequate for the description of hydrogen bonding in

H20 ice. Compared to the experimental equation of state
for ice X (see below), we find that LDA predicts O-O
bond distances which are about 10% too short. This is

consistent with our group's calculations on the ground-
state geometry of water clusters using Vanderbilt and

conventional norm-conserving pseudopotentials [15].
Therefore, we have adopted gradient corrections to LDA
in the density-functional theory following Becke [16] for
the exchange energy part and Perdew [17] for the corre-
lation energy part. This approach has been tested on the

FIG. 1. The structure of ice VIII. The unit cell has sixteen
H20 molecules with 0 and H denoted by bigger and smaller
circles, respectively. The ice X structure would be obtained by
displacing all the H's into O-O bond midpoints.

TABLE I. Comparisons between our theoretical equation of
state and experimental equation of state [2ll.

Lattice constant
(a.u. )

Pressure (GPa)
from our calculation

Pressure (GPa)
from experiment

9.9
10.0
10.1

10.2
10.3
10.4
10.5

103
97
91
85
78
72
65

114
97
87
76
71
68
61

IIA elements and IIB elements by Ortiz and Ballone
[18]. The correlation energy per particle of the uniform
electron gas is taken from Ceperley and Alder's resnlts
[19] for the LDA part.

First, we calculate the equation of state for ice X. The
total energies of the unit cell are calculated at lattice con-
stants from 10.0 to 12.0 a.u. in steps of 0.5 a.u. , fixing all

the protons in the unit cell at the bond midpoints. The
data points are fitted by a quadratic function. The hydro-
static pressure is calculated from the derivative of energy
with respect to volume [20] using the thermodynamic
identity p = —tlE/tl V. The experimental equation of
state by Hemley et al. [21] shows good agreement with

our theoretical one within a few percent error. The equa-
tions of state from theory and experiment are compared
in Table I. This shows that the gradient-corrected LDA
is capable of giving a good description of the structural
properties of H20 ice.

We next investigate the stability of the ice X structure
with respect to symmetry-breaking H displacements. For
this purpose, the Born-Oppenheimer surfaces are investi-
gated for lattice constants 10.0, 10.5, and 11.0 a.u. The
total energies of the unit cell are calculated, moving all
the protons away from the bond midpoints by the same
amount 6 in an antiferroelectric pattern, and the data
points are fitted by fourth-order polynomials. The data
and the fitted functions for the lattice constants 10.0 and
11.0 a.u. are shown in Fig. 2. If the protons were classi-
cal particles, the phase transition into an asymmetric pro-
ton position would occur when the coefficient of the quad-
ratic term changes sign, since this is the point at which
the potential energy surface develops a double minimum.
The coefficients of the quadratic terms are found to be
approximately linear in lattice constant over the range of
interest. With such a linear fit, it is found that the
coefficient crosses zero at about 9.9 a.u. , which corre-
sponds to about 103 GPa according to our theoretical
equation of state. This exceeds the experimental transi-
tion pressure by more than a factor of 2.

However, protons are so light that their quantum fluc-
tuations are not negligible. We estimate the size of the
effect due to the quantum Auctuations of the H coordi-
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FIG. 2. The Born-Oppenheimer potential energy surfaces of

an antiferroelectric collective mode in the ice X structure. The
upper and 1ower curves correspond to lattice constants of 10.0
and 11.0 a.u. , respectively.

When the ground-state expectation value of the Hamil-
tonian is minimized with respect to the two variation'il
parameters g and up, one finds that

ui) & 0, if g ~ (g —a) & 6y/JM, (4)

and up=0 otherwise. The transition into an asymmetric
position occurs when the equality holds. By calculating
the energy as only one proton is displaced from the bond
midpoint, keeping the others fixed, the coefficients u and

p «re obtained as a function of lattice constants. We
found that g' (g —a) —6p/~M vanishes at I0.74 a. u. ,

nates by considering a system ot interacting quartic
anharmonic oscillators. The analysis is based on the
theory of Koehler and Gillis [22]. In this theory, the
single-particle Hamiltonian has an on-site term Hp and
an intercell coupling term H] which is treated in the
mean-field approximation;

1 dHp= —,+ —au +pu
2M du'-

Hi = —gu(ul,

where M is the mass of the proton, u is the displacement
from the bond midpoint, and atomic units are used. The
calculations of Fig. 2 correspond to thinking of u as an
antiferroelectric collective coordinate, in the classical lim-

it, in which case Hri+H i
=

& (a —g)u'+au . Thus, the
c calculations allow us to obtain g

—o. , which should vanish
at the transition to the asymmetric structure. When the
kinetic-energy term in Hp is included, we expect the tran-
sition to be shifted so that it will not occur until some
positive value of' g —a. Following Koehler and Gillis
[22], we introduce a trial ground-state wave function of'

the Gaussian form centered at up,

which we identify as the transition lattice constant. This
corresponds to 49 GPa in our calculated (classical) equa-
tion of state of Table I. (The H quantum Auctuations

may also affect the equation of state; we estimate that
this efrect could increase the transition pressure to as
much as 55 GPa. On the other hand, use of the experi-
mental equation of state would give 43 GPa. ) The agree-
ment with the experimental estimates of 42 to 47.5 GPa
is now quite reasonable, considering the roughness of the
mean-field approximation.

We also calculated the transition lattice constants for
other types of proton displacement patterns consistent
with the Pauling ice rules, such as a ferroelectric pattern
and a disordered pattern. %'e found no significant
difference in the transition lattice constants regardless of'

the type of the displacement. Moreover, at least within

the mean-field theory outlined above, the shift in the
transition point due to quantum fluctuations should be

roughly the same for each. Therefore, our calculations do
not predict which displacement pattern is favored. How-

ever, we think the antiferroelectric displacement pattern
i» likely to require lowest energy when coupling of the

proton distortions to the tetragonal strain in the antifer-
roelectric case is taken into account.

So far we have confirmed that our theory does give a
transition near the experimentally observed one. In order
to understand better the nature of the transition, we try
to find a soft phonon mode at the transition by simulat-

ing the atomic vibrational dynamics. While the Car-
Parrinello ab initio molecular dynamics assumes the va-

lidity ol' classical mechanics [10] and therefore neglects
quantum Auctuation effects, this approach should still

give important insight into the nature of the transition.
We prepare the system in such a way that the ions in the
unit cell deviate from the positions in ice X by a small

amount in a random fashion and the electrons are in their
ground state. We let the system evolve for a duration ot

about 250 fsec. The phonon density of states is calculat-
ed from the Fourier transform of the velocity autocorrela-
tion function, and the total phonon density ot states is

decomposed into the contributions from different normal

modes of the system. In Fig. 3, we show the total phonon

density of states and the density of states projected onto
t.he stretching mode of the protons, for several different
lattice constants. Note that as the lattice constant ap-
proaches the transition from a smaller value, the stretch-
mode projected density of states moves toward lower fre-

quency. When we further decompose the stretch modes
ot the protons into ice-rule preserving (IRP) and ice-rule
violating (IRY) ones, we find thai the lower-frequency
and higher-frequency peaks in the right-hand side of F ig.
3 correspond almost entirely to the IRP and IRV stretch
modes, respectively. The center of' the IRP peak is clear-

1y shifting to dramatically lower frequency in the first

three panels of Fig. 3; a linear fit of co versus lattice con-
stant (;is expected for a solt mode) indicates that cii ~ 0

464



VOLUME 69, NUMBER 3 PHYSICAL REVIEW LETTERS 20 JULY 1992

.u.

c5

C
M
Q)

(0

0

(h

Q)

9.5 a.u.

10.0 a.u

10.5 a.u.

0 1 2 3 4
I I

0 1 2 3 4

at about 10.3 a.u. Meanwhile, the IRV modes shift by
only about 1000 cm ' over the same range. These re-
sults clearly confirm the interpretation of the transition in

terms of a mode-softening transition. (The shift of the
transition lattice constant from the earlier 9.9 a.u. to the
above 10.3 a.u. can be attributed to the thermal fluctua-
tions associated with the 600 K temperature of the simu-

lation; a mean-field estimate predicts a shift of precisely
this magnitude. )

In conclusion, we have applied the Car-Parrinello ab
initio molecular dynamics combined with ultrasoft pseu-
dopotentials to the calculations on high pressure phases of
H20 ice. LDA augmented with gradient corrections in

the density-functional theory describes the hydrogen
bonding well and the equation of state from the calcula-
tion shows a good agreement with experiment. The phase
transition between ice X and ice VIIIjVII is predicted to
occur at 49 GPa when the effect of the quantum fluctua-
tions of the protons is considered in the transition. It is
not explained within our theoretical approach why the
protons show an antiferroelectric order below the transi-
tion pressure at low temperature, which is a possibility of

frequency in 1000 (1/cm)

FIG. 3. The total densities of states at several lattice con-
stants (left panels), and the densities of states projected onto
the stretching mode of protons (right panels, vertical axis scaled

by a factor of 2.4).

further study. Finally, the 0-H stretch modes which

preserve the ice rules are observed to become soft at the
transition.
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