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Since its introduction in 1985, ab initio molecular dynamics has played an important role in the
analysis of ionic properties of condensed-matter systems. Extending this method to a Thomas-Fermi
model for plasmas, the structure and diffusion constants from molecular-dynamics simulations of the hy-
drogen plasma are compared to the results of approximate theories of the same model.

PACS numbers: 52.65.+z, 05.20.—y, 71.45.Jp

In 1985, while studying the vibration modes of a
Thomas-Fermi model of plasma, Laughlin [1] noted the
absence of numerical simulations on such systems (in
contrast to the large number of simulations on liquids de-
scribed by pair potentials). Such simulations would allow
comparison between “rigorous” results and the numerous
models commonly used in dense plasma physics, such as
the one-component plasma (OCP) (see, e.g., [2]), linear
screening theory [3,4], and density-functional theory cou-
pled with an integral equation of fluids [5-7].

Car and Parrinello have presented a pseudo-Lagrang-
ian technique to perform molecular-dynamics (MD)
simulations without an effective pair potential [8]. Al-
though this method was developed in the solid-state phys-
ics context, essentially to study s-p bonded materials, it
can be extended to plasma physics as long as the density
can be used as the only dynamical variable [9]. This re-
striction is necessary since we wish to consider high-
temperature plasmas, where the ionization state is not
prescribed but rather computed as part of the simulation,
which precludes the use of wave functions. The simplest
of these approximations is the Thomas-Fermi (TF) mod-
el, which can be improved by including exchange and
gradient corrections.

In this Letter a tool (the TFMD model) for studying
plasmas from “first principles,” which is not limited by
hypotheses regarding the electronic response function, the
ionization state of the ions, or time averaging of the ionic
motion, is described.

We present below molecular-dynamics simulations of a
hydrogen plasma, for representative values of the Wig-
ner-Seitz radius a, (4x/3)a’=p;, and of the ionic cou-
pling parameter I'; =e?/akpT; (10 <T;=<100). The
electronic density is characterized by ry, the ratio of the
electron sphere radius a, to the Bohr radius, r, =a./ag
(0.5=<r;<5), and by a temperature T, or equivalently
by an electronic coupling parameter I', =e¢?/a,kpT,. In
these terms, the ratio of the Fermi temperature to the
electronic temperature is T./Tr=(T,/2r,)(9n/4)?>.
This range of parameters spans various states of the plas-
ma, from the strongly coupled unscreened OCP (I' =100,
rs =0.5) to the strongly screened collection of quasineu-

tral atoms. In the results presented below, the effect of
screening on the radial distribution function and velocity
autocorrelation function is described, and compared with
approximate theories for selected states of the plasma.
The effect of finite electronic temperature is also investi-
gated.

In this paper, the unit of length is the electron sphere
radius g, and energies are given in units of e */a,.

Formulation of the equations of motion.— The model
has already been presented in the one-dimensional case
[9], while the three-dimensional version together with
many numerical details is the subject of a separate publi-
cation [10]. It suffices to state here that the fictitious La-
grangian treats the electronic density and the ionic coor-
dinates as dynamical variables, and takes the form

N
L=4uf p20dr+ EM; X R = Folp(r),R]
i=1

+A[fp(r)dr—NJ, (1)

where Folp(r),R;1=KIp(r)]1+VIp(r),R;] is the Thom-
as-Fermi free-energy functional, and A is a Lagrange
multiplier which ensures neutrality. The potential term
VIp(r),R;l is the classical Coulomb interaction energy of
the distribution of ions and electrons. The kinetic term is
given at T, =0 by

Klo® =c, [ p(r) ¥ dr 6
with

cx =15 Br)Yr,
and at finite temperature by [11,12]
Kip@1=0/T) [ Ip@E@ = # poF 32(O)1dr .

(3)
Em)=F 7 (p(r)/po) .

where F;(x) are the usual Dirac integrals and po=(1/
222)(2ry/T.) Y2,

The fictitious mass u has to be chosen sufficiently small
to ensure an adiabatic motion of the electronic density in
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the varying field of the ions, in a reasonable amount of
computer time. The kinetic-energy transfer between the
electronic and ionic degrees of freedom is then very small,
and the electron gas acts as a quasiholonomic constraint
on the ions to keep them on the Born-Oppenheimer sur-
face. As a rule of thumb, the ratio M/u is chosen such
that the ratio of characteristic frequencies of the electron-
ic and ionic system (which controls energy transfer) is
about 20. A good description of electronic pseudodynam-
ics and the mass ratio imposes a time step of 10 w, ',
where w,, is the ion plasma frequency.

The density is represented on a grid of 323 points, and
the simulation is done in real space, except for the Pois-
son equation, which is solved by Fourier transform. To
avoid huge forces when an ion passes near a grid point,
the Coulomb-Ewald potential is regularized at the origin,
by smearing the ionic core; that is, it is replaced by a pa-
rabola near the ionic nucleus, for r<r.. We have
checked that, provided r. is chosen sufficiently small
(0.1r,), this does not affect significantly ionic dynamics
[10].

For a system of 54 ions, the total-energy conservation
during a run of 20000 time steps is better than 10~ and
no significant drift is observed in the pseudo kinetic ener-
gy which remains 3 orders of magnitude smaller than the
ionic kinetic energy. At I'=50 and r; =1 a mass ratio
M/u =250 was used. This was increased to M/u=1000
for higher temperature plasmas of T=10 and r; =1. The
fact that no negative densities were encountered is an ad-
ditional test of adiabaticity.

Simulation of hydrogen.—Since there exists many
published results on approximate theories [7] (including
the Thomas-Fermi theory) of the hydrogen plasma, we
present results for this element, although it is not the
most appropriate for an application of Thomas-Fermi
theory. One of the most complete plasma models to com-
pare our results with is the hypernetted-chain theory,
where the average electronic and ionic density around an
ion are computed under the assumptions (i) that the elec-
tronic density can be computed in the field produced by
the central ion and the average distribution of neighbor-
ing ions, and (ii) that the average distribution of ions
around a central ion can be computed via, for instance,
the hypernetted-chain (HNC) integral equation, using
the pair potential obtained by integrating out the elec-
tronic degrees of freedom.

When the first step is performed using TF theory, and
the second using HNC theory, the corresponding model is
referred to as the TFHNC model. We can also define the
TFPY model for the Percus-Yevick equation.

lonic distribution function.— At high density, where
the Fermi kinetic energy is much higher than the Cou-
lomb potential energy (e.g., r, =0.5), the pair distribution
function g(r) computed with the TFMD model is indis-
tinguishable from the OCP g(r) of Sahlin, Brush, and
Teller [13]. TFHNC also yields the same pair correla-
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FIG. 1. Pair correlation function g(r) computed at I; =10

and r, =1, for the OCP model (bold line), TFMD model (dots),
TFPY (thin line), and TFHNC (dashed line).

tion function, a result that can be related to the fact that
mean-field theories are exact at high densities, where
linear response applies [7].

At lower density, screening effects cause significant
differences as shown in Fig. 1 where g(r) for r,=1 and
I'=10 is plotted. The first maximum and the first con-
tact point of g(r), given by the TFMD calculation, are
now shifted to smaller values, compared to the OCP re-
sult. These features are well reproduced by the TFPY
calculation while the TFHNC calculation underestimates
the value of the first peak.

In Fig. 2, we present results at ry=5, I'=50 where
screening is still more dramatic. In this case, the OCP
calculation is clearly inaccurate, and we encountered con-
vergence problems with the TFHNC theory. No phase
transition associated with these convergence problems in
the TFHNC model, as was suggested by various authors
[8], was observed. A calculation using a screened poten-
tial with the Thomas-Fermi screening length Arg/a;
=(1/12Z)"3r, "2 (referred to as LSMD) underesti-

-

Pair distribution function
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FIG. 2. Pair correlation function g(r) computed at I; =50
and r; =5 for the OCP model (solid line), TFMD (dots), and
LSMD model (dashed line).
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Pair distribution function
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FIG. 3. Comparison between the pair correlation function
computed for the OCP model at I'; =50 (solid line), with
TFMD at r; =5 and electronic temperature characterized by an
electronic coupling I', =0.1 (dots).

mates strongly the height of the first peak of g(r), but
better results can be achieved if we use an empirical re-
normalized screening length Afg=1.6A1r. The same
empirical renormalization has been also proposed by oth-
er authors [14] to reproduce accurately the pair correla-
tion functions of expanded liquid metals.

Since at strong coupling, T <K TF, all the preceding
simulations were performed at zero electronic tempera-
ture. To demonstrate finite-electronic-temperature ef-
fects, the electronic temperature was raised to T, =5TF
while keeping the ionic temperature constant. Such a
nonequilibrium situation can be encountered during ul-
trashort laser-matter interactions [15]. We observe now
a temperature driven ionization, and indeed, apart from
statistical noise, it is clear in Fig. 3 that at r; =5, I'; =50,
and I', =0.1, the TFMD model again yields the OCP pair
distribution function. This was expected, since the elec-
tron gas is again highly kinetic and therefore nearly uni-
form.

Velocity autocorrelation function and diffusion coef-
ficient.—The effective pair potential computed in a
mean-field approach such as TFHNC is not expected to
yield as accurate results for dynamics as for the static
case, since it assumes a spherically averaged neighbor-
hood for the central ion. In particular, the damping of
the oscillations in the velocity autocorrelation function
due to screening is the central quantity of interest.

We have computed the velocity autocorrelation func-
tion Z(t) from our simulations and made comparison
with mean-field and OCP models. At strong coupling
(I'; =50), Z(t) computed for the OCP model exhibits os-
cillations close to the plasma frequency which is due to a
coupling between individual motion and collective modes
[16]. As the density is lowered (r;, =1), the screened ion-
ic interaction can be interpreted in term of an effective
charge Z* smaller than the unscreened one, and hence
coupled with a lower collective frequency (Fig. 4). For
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FIG. 4. Velocity autocorrelation function Z (1) computed at
I'; =50, for the OCP model (thin line), TFMD model at r, =1
(bold line), and TFMD model at r, =5 (dashed line).

rs =5, there is almost no trace of collective effects.

A quantitative measure of the effect of screening is
given in Table I, by the variation of the diffusion
coefficient D= [§"Z(¢)dr, which is 3 times larger for
rs =5 than the OCP value (corresponding to r; =0).

The linear screened Thomas-Fermi potential yields too
large a diffusion constant. But the empirical screening
length AT, which reproduces the pair correlation func-
tion, also yields a rather good diffusion constant (Table
0.

Simulations at low coupling (I'; =10, r;=1) were also
performed to study the ability of the mean-field potential
to reproduce dynamical properties in this regime. In Fig.
5, Z (1) computed from a TFMD simulation is compared
with molecular-dynamics simulations using the pair po-
tential generated by TFHNC calculations (denoted as
MFPOT). While the TFMD velocity autocorrelation
function still exhibits damped oscillations [compare the
first maximum of Z(z) for ry=1 in Figs. 4 and 5] the
MFPOT calculation produces a totally damped velocity
autocorrelation function, a fact which is attributable to

TABLE 1. Diffusion constant in reduced units D* =D/a’w,
vs rs and coupling I'. MD Af stands for molecular dynamics
with the empirical Thomas-Fermi screening length and
MFPOT to molecular dynamics using the potential generated
by HNC calculations.

OCP
re =0 rs=1I re=>5
=50
TFMD 0.015 0.021 0.046
MD Afe 0.042
r=10
TFMD 0.134 0.164
MFPOT 0.166
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FIG. 5. Velocity autocorrelation function Z(¢) computed at
Ii=10 and at r,=1 with TFMD model (solid line) and
MFPOT model (dashed line).

overscreening of the ionic charge. Nevertheless, the
diffusion coefficients are very close in both cases.

In this Letter, a method for simulating the static and
dynamical properties of dense plasmas, which includes
self-consistently the response of the electronic density to
the ionic motion, was presented. These simulations pro-
vide much more information than previous models where
the ions are kept fixed [17]. Comparing the results with
some approximations commonly used in plasma physics,
sizable effects on the radial distribution function and
diffusion coefficient are observed. The inclusion of gra-
dient and exchange corrections is straightforward, and
should allow one to compute accurate values for the
equation of state, transport properties, and local environ-
ment in mixtures. The results of these calculations,

which are under way, will be the subject of a future pub-
lication.
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