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Optimal Stimulation of a Conservative Nonlinear Oscillator:
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A new method for nonlinear polychromatic resonant stimulation of conservative nonlinear oscillators is
introduced. As an example we consider a Morse potential that serves as a model for the HF molecule.
Numerical results show that a large energy transfer to such a conservative oscillator is possible under op-
timal stimulation with small driving fields. This makes selective excitation of specific modes possible.
The classically determined optimal force was also applied to the corresponding quantum system, with

similar results in energy transfer and dissociation.

PACS numbers: 42.50.Lc, 03.65.—w, 33.80.Rv, 8§2.50.Fv

Recently a very general and elegant method for the
resonant stimulation and optimal control of nonlinear sys-
tems was introduced. It has been successfully applied to
several nonlinear systems such as anharmonic oscillators
with dissipation [1]. While in the case of the damped os-
cillator the resonant polychromatic driving force and the
dynamics of the controlled system are given by the time-
reversed dynamics of the uncontrolled oscillator, this con-
cept fails for conservative systems.

In the present work we introduce a new method for op-
timal stimulation which can excite conservative systems
very efficiently. We apply the classically determined res-
onant driving force to a classical system and the corre-
sponding quantum-mechanical system and compare the
results. Such an approach is suggested by the close
correspondence between classical and quantum calcula-
tions as has been reported earlier, e.g., for the Morse os-
cillator with a sinusoidal driving force [2], for Rydberg
hydrogen atoms [3], or the dissociation of Hy* [4]. We
consider the Morse oscillator, a well-known model for
molecular vibrations [5]. We show that large energy
transfer and dissociation are possible for both classical
and quantum systems, while for monochromatic driving

forces dissociation probabilities are lower by orders of

magnitude [2]. The results of quantum and classical cal-
culations are in good agreement.

With a similar goal, optimal control theory— together
with full quantum calculations—has been applied to
quantum-mechanical systems [6]. Artificial intelligence
methods such as genetic algorithms have been used more
recently to calculate optimal quantum driving fields [7].
These methods have in common that they use a brute
force approach to obtain the optimal solutions. This
might be justified for engineering-type applications; it
does not provide much physical insight into the problem.
In contrast, our methods provide a very general metho-
dology with direct physical interpretations.

Resonant stimulation methods may be of relevance to

molecular spectroscopy and laser chemistry. Nearly two
decades ago it was found to be possible to dissociate po-
lyatomic molecules with smaller laser powers than had
previously been anticipated [8]. Dissociation was found
to depend on the total energy in the laser pulse rather
than on the intensity. It has been suggested based on
purely classical models that such behavior may be due to
chaotic dynamics of the driven nonlinear system [9,10].
The early experiments suggested the possibility of selec-
tive mode excitation or dissociation. However, it has
proven difficult to realize this goal, perhaps because the
onset of chaos causes the absorbed energy to spread er-
godically over many modes [10]. With the resonant
stimulation technique presented here a substantial excita-
tion or dissociation may be possible at field strengths well
below those necessary to drive the system into a chaotic
regime in which selective state or mode excitation may be
difficult [11].

In the following the method for calculating the optimal
resonant driving force is presented. As a model we con-
sider a particle with charge ¢ and mass m in a one-
dimensional potential ¥ (x). Here, the external driving
force is given by the dipole interaction e£ (7):

H=p2m+V(x)—exE(1). (1)

The optimal driving force is obtained from a variation-
al calculation: A certain amount of energy has to be
transferred into the system within a fixed time 7 at a
minimum effort (reaction power). The average squared
electric field that is proportional to the energy flux for a
plane wave is used as a measure of the effort:

.

j;) dt E*(1) =minimal (2)
7

J;) dteE(t)p =const , (3)

p+V'(x)—eE()=0. (4)

430 © 1992 The American Physical Society



VOLUME 69, NUMBER 3

PHYSICAL REVIEW LETTERS

20 JuLy 1992

The equation of motion (4) is an additional constraint to
the variational problem, where the prime denotes the
derivative with respect to x. The variational problem is
given by

o=5fordz{E2(t)+xlE(z)p+x2(z)[p+ V'(x) —eE (1)1},
(5)

where A and A,(¢) are Lagrange multipliers. Since our
objective is to gain a certain energy transfer, not to reach
a distinct point in phase space, a variable end-point varia-
tional calculus is used. The variation leads to a differen-
tial equation for the electric field:

mE@W)+E@)V"(x)=0. 6)

The second Euler equation deduced from the variation
corresponds to the equation of motion (4). From the
variation at the end point the conditions at the boundaries
(t=0,7), 6(p*/2m+V)=0 and EV'—Ep =0, are ob-
tained. Without loss of generality we shall only regard
solutions with initial conditions x(0) =xq, p(0) =0, since
every trajectory can be thought of as an extension of a
trajectory starting at these initial conditions. Considering
the end-point condition, E(0) has to vanish. The expres-
sion E(¢t)=f(t)p provides a solution of the variational
problem for the specified initial condition:

E()=2p/e(t +1¢), @)

where to=—2V'(x¢)/eE(0). For reasonable potential
V(x) the solution of the coupled differential equations,
Egs. (4) and (6), is unique for given x(0), p(0), E(0),
E(0). Therefore Eq. (7) gives the unique solution that
provides a specified energy transfer at a minimal flux
within a certain time. The constant to and E(0) are
determined by the constraint (3).

Equations (4) and (7) give an ordinary differential
equation which can be numerically integrated for given
initial conditions. We call this special solution the intrin-
sic optimal driving field £*(¢). In contrast to the control
methods introduced in [12], no feedback from the experi-
mental system is necessary to determine £ *(¢). This fact
is especially important since in general the initial condi-
tions (x(0),p(0)) of an experimental system, e.g., for a
molecule, are not known precisely. Therefore, we apply
E*(¢) to an ensemble of various initial conditions to gain
statistical information about the system’s control proper-
ties. The stability of the stimulation is obviously of con-
cern. A small initial difference ¢ between the controlled
system (X,p) with arbitrary initial conditions and the op-
timally driven oscillation (x,p), e(r)=x(t) —x(¢), devel-
ops in first-order approximation according to €— (e/m)
xV"(x)=0. The difference ¢ remains small for trajec-
tories of the controlled oscillator that are initially in a
neighborhood to the initial conditions of the optimally
driven system. The lack of stability allows efficient
stimulation only for driving fields of short duration.
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FIG. 1. (a) Example of a resonant driving field E*(¢) com-
puted for the Morse oscillator. Parameters for the calculation
of EX*(1) are to=3fs, T=70 fs, x(0) =0, p2(0)/2m =16 meV.
(b) Expectation value of position (x)={y(1)|x|y(t)) (solid
line) for the quantum system compared to the position x
(dashed line) of the optimally driven classical particle. The
quantum system was initially in the ground state.

Furthermore, the Hamiltonian of the driven system has
to be known to achieve effective stimulation. As dis-
cussed later in this paper, parameters of the Hamiltonian
can be determined using nonlinear resonance spectrosco-
py [11.

For the numerical calculations the equation of motion
for the Morse oscillator was used:

p=—2aDlexp(—ax) —exp(—2ax)1+d \E*(t),

where D and a are the dissociation energy and range pa-
rameter of the Morse potential, and d; is the effective
charge or dipole gradient. The following parameters
were taken for the HF molecule [2]: D =6.125 eV,
a=1.174lag ' =2.219x10'"° m~', d,=0.7876 D/ao
=4.965x10 "2 C.

Figure 1(a) shows an example of E*(¢). The field os-
cillates with almost constant amplitude and decreasing
frequency, which is consistent with the fact that the
quantum level spacings decrease with increasing excita-
tion. A similarly “chirped” driving field was deduced on
a phenomenological basis and used successfully earlier
[13]. Here the driving field is calculated on a purely
analytical basis from a variational principle. As can be
seen in Fig. 2, the energy transfer AH to the controlled
classical system is selective with respect to the initial
phase difference (corresponding to €) to the optimally
driven system. The phase was defined as ®=sgn(p)
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FIG. 2. Energy transfer AH as a function of the intial phase
difference between the controlled and the optimally driven sys-
tem. Parameters for calculation of the driving field as in Fig. 1.
Dashed line: initial energy of the controlled system is the same
as the optimally driven system. Solid line: initial energy of the
controlled system is equal to the quantum-mechanical ground-
state energy Ho=0.254 eV. Dash-dotted line: dissociation en-
ergy D.

xarctanvV (x)/T(p), where T(p) is the kinetic energy.
The energy transfer AH was calculated for two different
initial energies of the controlled system. In one case the
initial energy of the controlled system was equal to the in-
itial energy of the optimally driven system (dashed line).
The controlled system is effectively excited and even dis-
sociated by very small forces if the initial phase difference
is small. With larger initial energy of the controlled sys-
tem (solid line) € is large for any ®. Nevertheless, a
similar number of trajectories exceed the dissociation lev-
el. Eventually trajectories of the controlled system come
close to the optimally driven system’s trajectory and are
carried along. Thus, with resonant stimulation a large
average energy transfer into the system is possible even
without exact information about the initial conditions of
the controlled system.

The corresponding quantum system was studied by nu-
merical integration of the time-dependent Schrodinger
equation, given by

2 a2
,'h%‘tﬂ=——2-%g—'§+0[l —exp(—ax)]?y
X

—dE*(Dxy. (8)

Again, E*(z) is the classically calculated field. The
quantum system was prepared to be initially in the
ground state. The energy eigenvalues of the Morse oscil-
lator are given very accurately by H,=BD(n+ 1)
x[2—B(n+ $)], where B=(h2a?/2Dm)'*=0.0419.
Equation (8) was integrated numerically using a standard
algorithm [14]. The dissociation probability P; was com-
puted using the formula P, (1) =|Cy, w2, Ps(1) =1
—Y20P,(1), where the |y,) (n=0,...,23) are the
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FIG. 3. Dissociation probability P4(T) as a function of the
amplitude factor A for the classical (dashed curve with circles)
and quantum (solid curve with triangles) systems. Parameters
for calculation of the driving field are the same as in Fig. 1.

analytically given eigenstates of the unperturbed Morse
oscillator [15]. The time steps and the number of grid
points for the computation were increased until only
negligible differences in P; were found. The size of the
box, to which the computation is confined, was increased
to about 254 at a resolution of 4096 grid points. 75000
time steps were used, allowing a relative error < 5% in
Py.
In Fig. 1(b) the expectation value of position (x)
=(y(t)|x|w()) is shown in comparison to the position x
of the optimally driven classical particle. Especially for
short times, the quantum-mechanical system closely fol-
lows the oscillations in x. For pulses of long duration and
low fields the close resemblance between the classical and
the quantum system is lost, and the stimulation is less
effective.

In order to compare the quantum-mechanical and clas-
sical systems a classical P; was calculated by sampling
over a set of 100 initial conditions, equally spaced in
phase space with initial energy equal to the quantum
ground state. P,;(T) was defined by the fraction of tra-
jectories for which the final energy at time T exceeds the
dissociation level D.

Figure 3 shows P4(T) for both the quantum-mechan-
ical and the classical systems as a function of the field
scaled by a constant factor: E(1)=AE*(t). For the
quantum-mechanical system P,(T) can be remarkably
increased by minor increases in the field amplitude.
Maximum dissociation is obtained by choosing the ampli-
tude factor 4 =1.25. In the classical case the effect of in-
creased A is smaller.

As suggested for dissipative systems [11, nonlinear res-
onance spectroscopy is possible by varying the parameter
of the potential D =D+AD in the calculation of the op-
timal driving field. Starting at the same initial conditions
the optimal driving field £*(D;1) was calculated with the
same parameters until the optimally driven system ex-
ceeded the dissociation level D by 10%. The classical and
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FIG. 4. Resonance curves: dissociation probability Ps(T) as
a function of D/D for the classical (dashed line) and the quan-
tum (solid line) system. Parameters for the calculation of
E*(t) are 10=3 fs, x(0) =0, p2(0)/2m =0.254 eV, A=1.

the quantum-mechanical resonance curves are similar,
and in particular the maxima in P;(T) are at the same
positions; see Fig. 4. Both systems show their largest
peak in P4(T) at D=D. Neighboring peaks correspond
to different numbers of oscillations in E*(D;t). For fas-
ter stimulation (smaller ) and larger 4 the dissociation
becomes more effective, but the resonance curves become
broader.

In summary, our numerical calculations indicate that
resonant stimulation of a conservative system, as intro-
duced in this paper, may effectively excite and dissociate
both classical and quantum systems. The optimal field
was found to be parallel to the vibration of the molecule.
Its amplitude is a smooth, decreasing function of time,
Eq. (7). Numerical simulations show an ac field with de-
creasing frequency and almost constant amplitude. The
appearance of sharp resonance curves suggests the possi-
bility of the kind of nonlinear spectroscopy considered
previously for dissipative systems.
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