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Direct Measurement of the Three-Body Interaction Parameter in a Dilute Polymer Solution
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From measurements of the second virial coefVicient by small-angle neutron scattering we have found

that the theta temperature of linear polyethylene in dilute solution decreases with increasing molecular
mass. This behavior supports polymer theories that incorporate both chain connectivity and three-body
interactions. We calculate the three-body interaction parameter within the continuous-curve representa-
tion of a flexible polymer, and demonstrate from the same model that our value is consistent with the
molecular-mass dependence of the critical precipitation temperature.

PACS numbers: 61.25.Hq, 36.20.—r, 61.12.Ex, 64.60.Kv

The second virial coeScient .42 of a flexible polymer in

dilute solution represents the interaction energy between

two polymer molecules. It can be expressed as the sum of
eAective 2-, 3-, . . . , n-body contacts between segments

on the two chains [I]. In a good solvent the 2-body in-

teractions are strong and repulsive, and so higher-order

contacts can be neglected being, on average, much fewer

in number. If the temperature is lowered the binary in-

teraction decreases in strength, and eventually becomes

attractive, while the ternary interaction remains repulsive

and becomes relatively more important. At the theta

temperature 8~„ the second virial coefficient vanishes [2]
because contributions from the 2- and 3-body interactions

cancel. de Gennes has shown that the existence of 3-body

interactions near 8q, leads to tricritical behavior in poly-

mer solutions [3], which can have measurable conse-

quences [41. The relative number of 2- and 3-body con-

tacts depends on the length of the chain, so 8q, is expect-

ed to depend weakly on molecular mass. This depen-

dence has been seen with star-branched polymers [5], but

quantitative analysis of such systems is complicated by

the nonideal behavior associated with the branch point.

Despite extensive light scattering investigations [61 no

systematic dependence of 8~, on molecular mass has

been found before now in a linear-polymer-solvent sys-

tem. We present the first observation of this eff'ect, made

by neutron scattering, and show how the 3-body coupling

constant can be obtained from the measurements in a

simple and direct ~ ay.
The system used was polyethylene in solution in deu-

terated biphenyl (C~2D~p). Structurally, polyethylene is

the simplest flexible organic polymer, so it is a good rnod-

el material for fundamental studies of long chain mole-

cules. The polymer was prepared by hydrogenation of
anionically polymerized polybutadiene, which yields

essentially linear polymers with narrow molecular-mass

distributions [7]. We have reported some of the physical

properties of the polyethylene-biphenyl system earlier [8].
In the present investigation seven polymer samples were

used, spanning a range in molecular mass trom 4.4 to 100

kgmol ', and with polydispersity M /M„~ 1.05. We
label them from 3 to G in order of ascending mass for
convenience.

The neutron measurements were made on the dif-
fractometer D17 at the Institut Laue-Langevin. We
chose a neutron wavelength distribution that peaked at
I. I nm and had a 30% spread (full width at half max-

imum). This, together with the choice of instrument

geometry, gave a usable range of scattering vector of
0.10~ Q «0.95 nm '. The relaxed resolution resulted
in high count rates and only slightly degraded the spectra
compared with runs using more monochromatic neutrons,
Resolution eAects are of no significance in the relative

changes measured in the present study.
The intensity of neutrons coherently scattered with

small Q from a dilute solution of polymers depends on the

second virial coefficient according to Zimm's equation
[91:

«M P(Q) [dZ(Q)/d n] ' = I +2g,cM„,P(Q)

where d Z(Q)/d Q is the coherent partial differential
scattering cross section, P(Q) is the single-molecule
scattering function normalized so that P(0) = I, K is a

constant equal to 9.3X10 molm kg
' for the poly-

ethylene-biphenyl system [8], c is the solution concentra-
tion, and M„t is the weight-averaged molecular mass of'

the polymer. Equation (I) is exact in the limit of zero c

and Q, so Az can be determined from the gradient of a

plot of Kc[dZ(0)/d0] ' vs c. The intercept of such a

plot gives M . .
Neutron scattering has distinct advantages over alter-

native techniques, such as light scattering, for this experi-
rnent. First, the contrast for neutrons in a system of pro-
tonated polymer and deuterated solvent gives a better
signal-to-noise ratio than an equivalent rneasu remen t

with light, which is important at low M . Second, the
measurements are made at Q values well matched to the
size of the polymers, so P(Q) varies strongly with Q.
Curve fitting can then provide good estimates of dZ(0)/
dA from models for P(Q) In the range of' Q co. vered by
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1ight scattering the signal is almost independent of angle,
and so the discrimination against solvent background,
which is fairly fiat (and temperature dependent), is
worse.

For each sample, we measured a number of solutions
(between 5 and 7) of different concentrations up to a
maximum of about 30 kgm at several temperatures
between 380 and 425 K. After subtracting the solvent
background measured at the same temperature as the
solution, and normalizing to the scattering from a sample
of water, we fitted the spectra with the Debye model [10]
for P(Q), which we have found gives a good description
of the coherent scattering from dilute solutions when A2
is small. From these fits we extrapolated the cross sec-
tions to zero g to give dZ(0)/dQ, and used the concen-
trations appropriate to each temperature to determine A2.
We note that there is a smalI correction due to multiple
scattering [11] which causes the measured e~, to be too
large. The correction was negligible for the samples with
largest M, but for the smaller molecules it decreased
8~, by up to 0.5 K.

The corrected values of A2 are plotted as a function of
temperature in Fig. 1. To a first approximation the data
vary Iinearly with temperature, but a closer inspection re-
veals a small negative curvature which is most noticeable
with the samples of higher molecular mass. This is to be
expected, since in a good solvent 3 z decreases with
molecular mass [1]. Although slight, this curvature must
be allowed for if the values of e~, are to be reliable. Ac-
cordingly, we obtained 6~, from the zero of a second-
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order polynomial fitted to the data. For sample 6 only
one measurement was made, but because the function
Az(T) was so similar for each sample we could estimate
6~, from that point with reasonable accuracy. The theta
temperatures are indicated in Fig. 1 by the arrows. The
uncertainty in the individual A2 values is approximately
0.5x10 molm kg, and from the fits we estimate the
error in 6~, to be approximately + 0.5 K for samples 8
toF, and +1 Kforo.

The dependence of e~, on chain length has been the
subject of confusion and conflicting theoretical predic-
tions for many years. Mean-field theories [12], such as
Flory's smoothed-density model [2], assume that the
segment-segment interaction energy of a fiexible polymer
is the same as that of a gas of disconnected segments hav-

ing the same average spatial distribution as the polymer.
Since the average segment density decreases as the length
of the chain increases the effect of residual 3- and
higher-body interactions at the theta temperature be-
comes less important as the molecular mass M increases
[13]. Consequently, mean-field calculations lead to the
conclusion that 8q, increases with M.

In Fig. 1, on the other hand, 8~, decreases with M.
Such behavior has been found in computer simulations of
linear chains [14], and arises from an inadequacy with

mean-field theories first identified by Khokhlov [151. He
noted that because of connectivity the dominant term in

Az due to 3-body interactions arises from instances where
a pair of segments close together on one chain interacts
with a third segment on a second chain, yielding an

effective, repulsive, binary interaction. However, because
of chain stiffness, two segments separated along the chain

by a distance less than some cutoff cannot interact, so as
M decreases the contribution to A2 from these "coarse-
grained" 2-body interactions becomes less important rela-
tive to that from genuine interchain 2-body interactions.
Since the latter are attractive in poor solvents, e~, de-
creases with increasing M.

We discuss the results in the framework of the
continuous-chain model, in which the trajectory of the
polymer is represented by a smooth space curve, and
segment-segment interactions by 8'-function pseudopoten-
tials [16] characterized by the dimensionless 2- and 3-
body parameters, z2 and z3, the latter of which is as-
sumed to be independent of temperature in the theta re-
gion. Expressions for A2 calculated by first-order pertur-
bation theory [17] lead to

Temperature (K)
FIG. 1. Temperature dependence of the second virial

coefficients of seven samples of polyethylene in d-biphenyl. The
molecular masses (in kgmol ') are A, 4.4; B, 5.9; C, 9.7; D,
14.6; E, 32.8; F, 48; and G, 100. Each curve has been displaced
upwards by 5x10 molm kg relative to the previous one.
The lines are fits by a second-order polynomial, and the arrows
indicate the Bg, temperatures where the second virial coefficient
vanishes.

(2)

where W and l are the number and length of the statisti-
cal segments, 60 is the temperature at which z2 vanishes,
and x' is defined by the dependence of z ~ on temperature
close to 80,

(3)
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Equation (3), together with the standard proportionality
[I] of Az and zq, gives

2 l/2/V (S2) 3/2 (~l ) )/v

(4)
M Hp

where (5 )p is the mean-squared radius of gyration of the
chain at the theta temperature. Combining Eqs. (2) and
(4), we obtain

(16~)3/'/V,e.,(M) —e„( )=
2 dT

This value is comparable with estimates of z3 in other
polymer-solvent systems, for example from the third viri-

al coeScient [17,21]. We stress, however, that the
present experiment is the first to obtain z3 directly in the
limit of infinite dilution, and with a reliable value for z3 it

is now possible to test predictions for other solution prop-
erties at higher concentrations.

Recently, the continuous-curve model was used to cal-
culate the critical point for phase separation of a polymer
solution [22]. In the present notation, the critical tem-

perature T, varies according to

' 3/2
(S ')p

X
M

z3
(5) T,(-)—T, (M) = 2' Ng dA2

gq (zq) dT

I ~/2
(S')p

I

394

395 '-,

E

(b) T,

which is an expression for z3 in terms of experimental
quantities only [18]. Equation (5) has been derived by
other methods based on finite-chain perturbation theory
[19], and modifications to it have been calculated by
renormalization-group theory [20].

Since (S )p-M, and from Fig. 1 (dAq/dT)~ is virtual-

ly independent of M, Eq. (5) predicts that 8~,(M)
—8~,(ee)-M ' . Figure 2(a) demonstrates that the
measured 8q, values are consistent with this relation,
and we deduce the constant of proportionality 14+ 2
K kg mol '

by linear regression. This, together with
the average value of (dAz/dT)g=(0. 25+'0.01)x10
molm kg K ' from Fig. 1, and the ratio (5 )p/M
=(1.95~0.08) x 10 m molkg ' determined previ-

ously [8], yields

:3= (1.2 ~ 0.2) x 10

(6)

where gz (z3) is the reduced second cumulant evaluated
on the mean-field critical isochore. From Eq. (6),
T,(~) —T, (M)-M '/. The theory in Ref. [221 with
-3=(1.2+ 0.2) x10 gives gz (z3) =0.85 ~0.05 and so

we predict 109 + 7 K kg
' mol ' for the coeScient of

M ' . This is in good agreement with the value 105 ~ 3

K kg' mol ' obtained from the experimental T, values

[8] shown in Fig. 2(b), which is an important result from

the theoretical point of view as it shows that the model
can describe solution properties measured in different
concentration regimes with a single set of parameters.
Finally, let us note that the discrepancy between

Hq (ee) =393.7+ 0.7 K and T (ee) =396.0+ 0.6 K is

not understood.
In conclusion, our experiments have exposed an inade-

quacy of mean-field theories of polymers and have shown

that it requires the combined effects of chain connectivity
and 3-body interactions to explain the behavior of poly-

mers in theta solution. We have obtained the 3-body in-

teraction parameter via a perturbation theory which is

exact in the weak interaction limit, and have shown that
the theory appears to be self-consistent over a range of

solution concentrations.
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FIG. 2. Variation of (a) the theta temperature and (b) the
critical precipitation temperature with molecular mass, plotted
according to Eqs. (5) and (6). The temperature scale in (a) is

e n la rged 5 t i mes
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pa red to (b).
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