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An unusual optimum pair basis exists in the nuclear shell-model wave function for an even system of
like particles. This prompts the proposal of a generalized pair mean-field method, in which the desired

goal of avoiding the dimensional difficulty in the traditional shell-model approaches may be possible.

PACS numbers: 21.60.Cs

A central eftort in nuclear structure physics in the past
two decades was the utilization of collective pairs as
building blocks to construct many-body wave functions.
To this end, low-spin pairs were always used. Basically
there were two approaches in this regard. One was to
construct a model space from the collective S and D pairs
and at the same time introduce eA'ective interactions. Ar-

chetypical examples of this approach are the successful
interacting boson model [I] and the fermion dynamical
symmetry model [2]. The other approach began with in-

teractions which supposedly were appropriate for the full

major shell and then tried to "improve" the wave func-
tions by adding pairs other than 5 and D (G, say) [3,4].
A salient feature of such a low-spin pair basis, albeit S
and D, or S, D, and G, is that the many-body wave func-
tions usually manifest strong pair configuration mixing,
especially in the deformed system. Therefore, it is natu-

ral to inquire whether the utilization of a traditional low-

spin pair basis constitutes a unique choice in studying
such physics. Could a basis without signtftcant conftgu
ration mixing (i.e., pairs moving in a pair mean fteld) ex-
ist in which the many-body wave functions appear as
direct products of these pairs? This paper intends to re-

veal this possibility, and the resultant pairs are called op-
timum pairs.

We shall first illustrate this idea via a simple solvable

model: like particles moving in a single-j shell. This ex-

ample is chosen because it is solvable and contains gener-
ic features for fermion pairs [5]. We begin by perform-

ing a pair-component analysis of the shell-model wave

functions in order to demonstrate the existence of the op-
timum pairs. This is followed by the introduction of a
generalized pair mean-field method (GPFM), from which

we will show how a pair mean field can be generated from
a given Hamiltonian, and how the optimum pairs can be
chosen. Finally, a comparison between the GPFM results
and the exact shell-model solutions are given. The gen-
eral case of protons and neutrons in multi-j shells will be
published elsewhere.

The most general Hamiltonian for like particles in a
single-j shell is

H =c~d2j +1(az xa~) +—pa 2J+ I CJ(AJ XA 1)1

where AJ =(a~ xa~ ), CJ =(jjJ~V~jj J), and a~ (aj) the
creation (annihilation) operator with angular momentum

j and energy s~. Throughout this Letter, e~ is set equal to
zero. In this paper, we shall consider a four-particle sys-
tem. To facilitate the pair-component analyses, we have
chosen a nonorthogonal, unnormalized, and overcomplete
two-pair basis for the shell-model calculations. They are
~JtJ2J) =(AJ, XA), ) ~0). In this basis, the components
are correlated through the following relation:

~ Jt J2J) = —g Jt J2Jt J2X(jjJ~,'jjJz'JIJ2J)
~
J~JpJ), (2)

where the symbol J; stands for (2J;+1)'1, and X the 9-j
symbol. Equation (2) reveals a profound diA'erence be-
tween a fermion pair and a boson. It shows that for a fer-
mionic many-body wave function, a complicated mixing
of difTerent pair configurations can result in a pure pair
configuration, and vice versa. This opens the possibility
of a optimum pair description for a many-body system
which we will now discuss.

The four-particle basis of Eq. (2) is used to construct
the H matrix. It is well known that an overcomplete
basis will result in nonunique independent sets. For in-

stance, in the j = '2' and J=2 case, although there are
thirty diff'erent pair configurations, only six can be in-

dependent. One may choose ~0, 2;2), ~2, 2;2), ~2, 4;2),
~4„4;2), ~4, 6;2), and ~6, 6;2) (referred to as low-spin pair
basis), or ~20, 20;2), ~18,20;2), ~18, 18;2), ~16, 18;2),
~16, 16;2), and ~14, 16;2) (the highest-spin pair basis), or

any other combinations. Of course diAerent bases must

all lead to the same physics. Hence, using low-spin pairs
as the building blocks does not necessarily imply the loss
of high-spin correlations, and vice versa.

In Table I, the shell-model results are presented. The

g Q interaction is chosen to simulate a strongly de-
formed system. One sees that the eigenvalues for both
sets are equal, as expected, but with significantly diferent
pair structures. A striking feature is that while there is

strong mixing for the low-spin basis, there is very little
mixing for the highest-spin basis. Indeed, this feature
persists for all J states up to spin 10 in the g, P, and 7

bands. For higher bands, the remnant of this feature still

survives. Physically, this means that one can sum up the

pair components of the low-spin basis to form a nearly
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14-16
Highest-spin pair basis

16-16 16-18 18-18 18-20 20-20

—1.45
—0.86
—0.35
—0.08

0.24
0.47

0.00
—0.01

0.06
0.63
0.84

—1.49

0.00
0.00
0.20
0.16
0.98
1.10

0.00
—0.13

0.08
1.79

—0.77
0.41

0.04
—0.01

1.38
—0.13
—0.17
—0.06

0.01
—1.99
—0.02
—0.13

0.03
—0.01

1.41
0.01

—0.04
0.00
0.00
0.00

TABLE I. Pair component analysis of J=2 shell-model wave

functions (j = —", , H = —
Q Q, energies are in arbitrary units).

for an exact shell-model calculation is shown in part a of
Fig. l. One sees clearly for the g. Q interaction the ex-
istence of highest-spin optimum pairs.

This example prompted us to ask whether the optimum
pair concept can persist more generally and if so, what is

the underlying dynamics? To answer these questions, a
generalized pair mean-field method is introduced which
we will now discuss. We begin by considering an auxili-
ary Hamiltonian with a multiplier co,

H'=H —rog Ij,
E

—1.45
—0.86
—0.35
—0.08

0.24
0.47

0-2

0.23
0.95
0.62

—0.86
—0.42
—0.23

0.33
0.08
0.30

—0.08
—0.48

0.36

0.37
0.97
0.93
0.93

—1.51
1.57

—0.04
—0.05

0.21
0.89
0.29

—0.83

Low-spin pair basis
2-2 2-4 4-4 4-6

0.39
0.72

—0.55
1.41
0.93
0.12

6-6

—0.07
—0.53

1.02
0.70

—0.05
0.23

H
i JiJ2J) =(CJ,+CJ, —2ro+ki2) i JiJ2J)+6, (4)

where P;&~I;J stands for the identity interaction and is

chosen for its simplicity. Obviously, H' and H must have
the same wave functions, while the energies can diA'er by
a constant. We will again consider the four-particle sys-
tem as an example to illustrate the basic idea. By apply-
ing H' to the basis

~
J ~ J2J), we get

single highest-spin pair component [see Eq. (2)]. Hence
this analysis suggests that for this example, the g-band
can in fact be labeled purely as (20-20) (predominantly
coming from the state ~20, 20;J)). Similarly, (18-18) for

P band and (18-20) for y band, etc. The entire spectrum

where

k i2(CJi +CJ 2')(2Ji +1)(2J&+1)4
1+BJ,J,

XX(jjJ~jjJ2,'J~'J2J) (s)
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FIG. 1. The spectrum of four particles in a single-j shell (j= —", , H= —
Q Q, energies are in arbitrary units). Part a, the shell-

model calculation; b, the GPFM calculation.

419



VOLUME 69, NUMBER 3 PH YSICAL REVI EW LETTERS 20 JULY 1992

and

& = —g 2(CJ +CJ —2')J|JpJ I Jp
J1J2

xX(jjJl'jj J2'Ji J2J) I J!J2J) . (6)

which means that the contribution of h, is minimized.
This is achieved when

co= —,
' (CJ +CJ ), (8)

where ( ) stands for the average with the weights
(2J!+ 1)(2J2+1)X (jjJ i jjJq,JiJ2J) and excluding
J1J2 =J1J2 and J2J1 in the sum over J1 and J2. When h,

is negligible,

H !Ji J2J) (CJ + CJ 2CO+k i2)!J i J2J) .

Equation (9) is an optimum pair approximation where

the eigenfunction is a direct product of two individual

pairs! J|J2J) without mixing, and the eigenvalue is

The prime on the sum in Eq. (6) means the exclusion of
the values J]J2=J1J2 and J2J1. The value of cu is

chosen so as to minimize g, the square sum of the state
amplitude of Eq. (6),

J, + J, i z! z JJ i'JJ z'
J1J2

For the Q Q interaction, CJ =2(jll Y211j) W(j,j,j,j;2,J).
By choosing the highest-spin pair basis and inserting CJ,
co [Eq. (8)], and

klan

[Eq. (5)] into Eq. (10), the exact re-
sults are satisfactorily reproduced (see part b in Fig. 1).

The above formulation can be applied to any interac-
tion. The key point is to find the optimum pairs for
which d is negligible. For the Q Q interaction, the op-
timum pairs come from the high-spin pairs; for other in-

teractions, the optimums pairs may diA'er. In general,
they should be determined by minimizing g which is a

measurement of the validity of the optimum pair approxi-
mation (i.e., neglecting 6). For example, if the interac-
tion is monopole pairing, then the optimum pair is found
to be the S pair plus other independent pairs which can
be chosen arbitrarily. In this case, it is easy to see that
choosing co=0 will lead to A=O, and the exact results
can be obtained: E =Gp(/V k)(Q /V+1 —k), where
0 =(2j+1)/2, Gn the pairing strength, and k the pair
number of non-S pairs.

In fact, the GPFM can be formulated generally in

terms of a set of coupled dispersion equations via the
Richardson method [6]. Following Ref. [6], the pair
creation operator is defined as follows:

1/Z

(atxg. ) 'CJ,

2e —E

E(JiJ2J) =F-'(J i J2J)+6',

E'(J
i JpJ ) = (CJ, + CJ, —2'+ k 1 p) .

(io)

where the pair amplitude is dependent on E; and is deter-
mined by imposing an optimum pair condition, namely,
requiring the eigenfunctions to be a product of individual

!
pairs. For the four-particle system, it is
=(Bit x Bt ) Jlo) and

CJ2 CO k 12H'!~) =(z, +E,)!~)+cJ'" 1+ +
2' —E2 E1 —E2

CJ, k12+C)" i+ ' + " (~ xB', )'!0)+~,
2' —E1 E~ —E1

where A is similar to Eq. (6),

(i 2)

6= —p 2(CJ, +CJ, —2')Ji J2Ji J2X(jjJi jjJz JiJzJ) ''fcj (Al xBJ ) —CJ (BJ xAJ, )
J1J2 2 1

CJ, —co kl+ +
2' E] E2 E1

CJ, —co
l+ +

2' —E2 E1 —E2

=0,

=0,
(i 4)

and can be neglected if Eq. (8) is used to determine ro

and the basis is constructed by the optimum pairs which
will minimize the g . By demanding that E1 and E2
should satisfy the following coupled dispersion equations,

! Thus, we obtained a pair mean-field solution for H': The
eigenfunction is the direct product of individual optimum
pairs (BJ, x BJ,) !0); and the eigenenergy is the sum of
individual pair energies, which are individually ascer-
tained from the coupled dispersion equations [Eq. (14)].
For the four-particle example, Eq. (14) can easily be
solved:

E'(Ji J2J) =E i+ED

Eq. (12) becomes =4@i+ (CJ, + CJ, —2'+ k i 2) . (i 6)

H'I~) =(z, +~2) I+) . (1 s) This is exactly the result given by Eq. (10) with si =0.
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In this paper we have only shown the existence of op-
timum pairs for the simplest systems. For multi-j case,
the GPFM in the form of coupled dispersion equations
can be easily extended. The traditional shell-model ei-
genvalue problem is now replaced by solving N coupled
dispersion equations (where N is the pair number), which

appears to be numerically tractable even for heavy sys-
tems. The detail discussions about the extension to the
multi-j case is beyond the scope of this paper and will be
reported elsewhere. However, there are still many impor-
tant questions requiring further studies. For instance,
when both pairing and Q Q interactions are present, in

particular, when there is an n pQ -Q interaction, the ex-
istence of an optimum pair basis remains to be explored.
Such work is now in progress. Nevertheless, what partic-
ularly intrigues us is that although the chosen simple sys-
tem was well investigated in the past, it was not expected
that such an interesting and nonintuitive physics, that a

strongly deformed system can be represented by a pure
pair configuration, could emerge from it.

Emphasis must be made that although the present op-
timum pair picture is akin to an independent pair picture
in many aspects, they are not the same. Unlike the con-
cept of a static common potential well, the pair mean
field here is sensitively particle number and state depen
dent. For instance, the pair energy E~ for spin J& in the
state

~
J ~ J2J) is not the same as a "free" pair, nor is it the

same if J2 or J changes. The reason is because there are
exchange effects in co and k~2, which are state and num-

ber dependent. Only by neglecting ro and k ~2 will a com-

mon potential emerge which is equivalent to the boson

energies in the Tamm-Dancoff approximation. In addi-

tion, the choice of optimum pairs (for an n psyste-m, one

may have to include n ppairs) -and their structure will

also vary from state to state. Thus, the determination of
pair mean field in the GPFM is highly nontrivial. For
each state the energies and structures of the optimum
pairs must be self-consistently determined from the cou-
pled dispersion equations. Furthermore, one should note
that there is actually a free choice of the auxiliary Hamil-
tonian and Eq. (3) is merely the simplest one. In fact any
scalar, if it is known to be (or approximately) diagonal in

the optimum pair basis and has parameters to minimize

g making 6 negligible, will be a good choice to replace
to+I J. With a multitude of rich structures, it is certainly
not inconceivable that the GPFM could very well de-
scribe a realistic nuclear many-body system and reveal

new physics which have so far escaped notice. %ork
along this direction is now in progress.

In summary, a novel optimum pair basis is proposed to
construct the many-body shell-model wave functions.
This is followed by the introduction of a generalized pair
mean-field method to solve the many-body problem. %e
have shown that for the single-j case, the GPFM is an ex-
cellent approximation to the exact solutions for both the
vibrational and rotational limits. This method avoids the
formidable, and probably impossible, task of a matrix di-

agonalization, thus avoiding the dimensional difficulty in

the traditional shell-model approaches for heavy nuclei
and restricts one to compute only states of interest.
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