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An interesting two-dimensional model theory has been proposed that allows one to consider black-hole
evaporation in the semiclassical approximation. The semiclassical equations will give a singularity where

the dilaton field reaches a certain critical value. This singularity will be hidden behind a horizon. As the
evaporation proceeds, the dilaton field on the horizon will approach the critical value but the tempera-
ture and rate of emission will remain finite. These results indicate either that there is a naked singulari-

ty, or (more likely) that the semiclassical approximation breaks down.

PACS numbers: 97.60.Lf, 04.20.Cv, 04.60.+n

Callan, Giddings, Harvey, and Strominger (CGHS)
[1] have suggested an interesting two-dimensional theory
with a metric coupled to a dilaton field and N minimal

scalar fields. The Lagrangian is

horizon by a constant and compensate by rescaling the
coordinates x+, but there is nothing corresponding to the
freedom to choose the constant b. In terms of the coordi-
nates u+- defined as before with b = 2,

c= i—
g e 't'[R+4(vy)'+4x'] ——g(vf, )'1 1

271 2 i=I

If one writes the metric in the form

ds =e ~dx+ dx

the classical field equations are
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These equations have a solution

y
= —b ln( —x+x —) —c —ink,

p = ——,
' ln( —x+x —)+ln(2b/X),

where b and c are constants and b can be taken to be pos-

itive without loss of generality. A change of coordinates

u ~ = + (2b/X) 1n( ~ x ~ ) ~ (1/X) (c+1nz)

gives a flat metric and a linear dilaton field

p=0,

tt
= —

—, X(u+ —u )

This solution is known as the linear dilaton. The solution
is independent of the constants b and c which correspond
to freedom in the choice of coordinates. Normally b is

taken to have the value 2 .

These equations also admit a solution

p=p —c= —
—,
' ln(MX ' —k e 'x+x —)

This represents a two-dimensional black hole with hor-

izons at x+ =0 and singularities at x+x —=MR e
Note that there is still freedom to shift the p field on the

p= —
—, ln(1 —Mk 'e ' ),
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This black-hole solution is periodic in the imaginary time
with period 2zk '. One would therefore expect it to
have a temperature

and to emit thermal radiation [2]. This is confirmed by

CGHS. They considered a black hole formed by sending
in a thin shock wave of one of the f; fields from the

weak-coupling region (large negative p) of the linear di-

laton. One can calculate the energy-momentum tensors
of the f; fields, using the conservation and trace anomaly

equations. If one imposes the boundary condition that
there is no incoming energy momentum apart from the

shock wave, one finds that at late retarded times u —there
is a steady flow of energy in each f; field at the mass-

independent rate

k "/48 .

If this radiation continued indefinitely, the black hole

would radiate an infinite amount of energy, which seems
absurd. One might therefore expect that the backre-
action would modify the emission and cause it to stop
when the black hole had radiated away its initial mass. A

fully quantum treatment of the backreaction seems very

difticult even in this two-dimensional theory. But CGHS
suggested that in the limit of a large number % of scalar
fields f;, one could neglect the quantum fluctuations of
the dilaton and the metric and treat the backreaction of
the radiation in the f; fields semiclassically by adding to

the action a trace anomaly term

1'2 NB+6 —P.
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The evolution equations that result from this action are

a, a y=(I —
—,', Ne'~)a+a p,

2(1 ——„Ne ~)8+8 p=(1 —
&, Ne ~)

x(48+y8 y+X'e").
In addition, there are two equations that can be regarded
as constraints on the data on characteristic surfaces of
constant x ~,

8~& —2tlpp8+P = —'Ne'~[8+p Bp—p8+p —t+(x+)],
|I'y —28 p8 y= ,', Ne—"[8'-p 8—p8 p t —(x )],
where t ~ (x —) are determined by the boundary condi-
tions in a manner that will be explained later.

Even these semiclassical equations seem too difficult to
solve in closed form. CGHS suggested that a black hole
formed from an f wave would evaporate completely
without there being any singularity. The solution would

approach the linear dilaton at late retarded times u —and
there would be no horizons. They therefore claimed that
there would be no loss of quantum coherence in the for-
mation and evaporation of a two-dimensional black hole:
The radiation would be in a pure quantum state, rather
than in a mixed state.

In [3,4] it was shown that this scenario could not be
correct. The solution would develop a singularity on the
incoming f wave at the point where the dilaton field

reached the critical value

pp= —
2 ln(N/12) .

This singularity will be spacelike near the f wave [4].
Thus at least part of the final quantum state will end up
on the singularity, which implies that the radiation at
infinity in the weak-coupling region will not be in a pure
quantum state.

The outstanding question is: How does the spacetime
evolve to the future of the f wave? There seem to be two
main possibilities: (1) The singularity remains hidden
behind an event horizon. One can continue an infinite
distance into the future on a line of constant p (po
without ever seeing the singularity. If this were the case,
the rate of radiation would have to go to zero. (2) The
singularity is naked. That is, it is visible from a line of
constant p at a finite time to the future of the f wave.

Any evolution of the solution after this would not be
uniquely determined by the semiclassical equations and
the initial data. Indeed, it is likely that the point at
which the singularity became visible was itself singular
and that the solution could not be evolved to the future
for more than a finite time.

In what follows I shall present evidence that suggests
the semiclassical equations lead to possibility (2). This
probably indicates that the semiclassical approximation
breaks down as the dilaton field on the horizon ap-
proaches the critical value.

Static black holes .—If the solution were to evolve
without a naked singularity, it would presumably ap-
proach a static state in which a singularity was hidden
behind an event horizon. This motivates a study of static
black-hole solutions of the semiclassical equations. One
could look for solutions in which p and p were indepen-
dent of the "time" coordinate r =x++x —and depended
only on a "radial" variable o.=x+ —x —but this has the
disadvantage that the Killing vector a/'dr is timelike
everywhere. This means the black-hole horizon is at
o= —~. Instead it seems better to choose the Killing
vector to be that corresponding to boosts in the back-
ground two-dimensional Minkowski space. Then the past
and future horizons will be the null lines x+ =0 inter-
secting at the origin. One can define a radial coordinate
that is left invariant by the boost as

r = —x+x2=—

It is straightforward to verify that r is regular on a space-
like surface through the origin and has nonzero gradient
there if one chooses the positive square root on one side of
the intersection of the horizons at r =0 and the negative
root on the other. In the r coordinate the field equations
for a static solution are

y" +—'y'= 1
— e" p"+ —p'

r 24 r

I — e z~ y"+—y' =2 I — e 2y [(~~) 2 &2e 2P]
12 r 24

The boundary conditions for a regular horizon are

0'=p'=o

A static black-hole solution is therefore determined by
the values of P and p on the horizon. The value of p,
however, can be changed by a constant by rescaling the
coordinates x~. The physical distinct static solutions
with a horizon are therefore characterized simply by pt„
the value of the dilaton on the horizon.

If pt, ) po, p would increase away from the horizon and
would always be greater than its horizon value. This
shows that to get a static black-hole solution that is

asymptotic to the weak-coupling region of the linear dila-
ton, pt, must be less than the critical value po. One can
then show that both p and p must decrease with increas-
ing r. This means the backreaction terms proportional to
N will become unimportant. For large r one can there-
fore approximate by putting N =0. This gives

P =p —(2b —1) lnr —c,
P"+ (1/r )P' =2 [[p' —(2b —

1 )r '] —
A, e ~j .

Asymptotically these have the solution

2b K+L lnr
p = —lnr+ ln — +

4b

where b, c, K, L are parameters that determine the solu-
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tion. The parameters 6 and c correspond to the coordi-
nate freedom in the linear dilaton that the solution ap-
proaches at large r. If L =0, the parameter K can be re-
lated to the Arnowitt-Deser-Misner (ADM) mass M of
the solution. However, if L&0, the ADM mass will be
infinite. This is what one would expect for a static black
hole in equilibrium with radiation at a nonzero tempera-
ture because there will be incoming and outgoing radia-
tion all the way to infinity. Of course a solution formed
by sending in an f wave to the linear dilaton will have a
finite mass. But one might hope that it would settle down
to a static black-hole solution which has finite mass be-
cause there is no incoming radiation (by boundary condi-
tions) and no outgoing radiation (because the rate of ra-
diation has gone to zero). Indeed this is what would have
to happen if the singularity were to remain hidden for all
time.

For pi, ((pp, the backreaction terms will be small at all
values of r and the solutions of the semiclassical equa-
tions will be almost the same as the classical black holes.
So

solution will tend to the linear dilaton in the manner of
the asymptotic expansion given before. One or both of
the constants K and I must be nonzero, because the solu-
tion is not exactly the linear dilaton. Fitting to the
asymptotic expansion gives a value

If the singularity inside the black hole were to remain
hidden at all times, as in possibility (l) above, one might

expect that the temperature and rate of evolution of the
black hole would approach zero as the dilaton field on the
horizon approached the critical value. However, this is

not what happens. The fact that the black holes tend to
the limiting solution p„p, means that the period in imagi-

nary time will tend to 4mb„/k. Thus the temperature will

be

The energy-momentum tensor of one of the f; fields can
be calculated from the conservation equations. In the x+
coordinates, they are

where M is the mass at a finite distance from the black
hole.

Consider a situation in which a black hole of large
mass (I))N)/12) is created by sending in an f wave.
One could approximate the subsequent evolution by a se-
quence of static black-hole solutions with a steadily in-
creasing value of p on the horizon. However, when the
value of p on the horizon approaches the critical value pp,
the backreaction will become important and will change
the black-hole solutions significantly. Let

0=yp+y, p=Ink+p,

Then A and X disappear and the equations for static
black holes become

(I —e'~) y "+—y' = (2 —e'~) [(i'') ' —e-"] .
r

As the dilaton field on the horizon approaches the criti-
cal value pp, the term I

—e ~ will approach 2e„where
This will cause the second derivative of p to

be very large until tIi' approaches —e " in a coordinate
distance hr of order 4t.'. By the above equations, p' ap-
proaches —2e " in the same distance. A power series
solution and numerical calculations carried out by
Jonathan Brenchley confirm that in the limit as e tends to
zero, the solution tends to a limiting form p„p, .

The limiting black hole is regular everywhere outside
the horizon, but has a fairly mild singularity on the hor-
izon with R diverging like r '. At large values of r, the

where t ~ (x ~ ) are chosen to satisfy the boundary condi-
tions on the energy-momentum tensor. In the case of a

black hole formed by sending in an f wave, the boundary
condition is that the incoming flux (Tf++) should be zero
at large r. This would imply that

r+ = l/4x+

The energy-momentum tensor would not be regular on

the past horizon, but this does not matter as the physical
spacetime would not have a past horizon but would be
difl'erent before the f wave.

On the other hand, the energy-momentum tensor
should be regular on the future horizon. This would im-

ply that r (x ) should be regular at x =0. Converting
to the coordinates u-+, one then would obtain a steady
rate

), 2/I 92b 2

of energy outflow in each f field at late retarded times
u —.

In conclusion, the fact that the temperature and rate of
emission of the limiting black hole do not go to zero es-

tablishes a contradiction with the idea that the black hole

settles down to a stable state. Of course, this does not tell

us what the semiclassical equations will predict, but it

makes it very plausible that they will lead either to a

naked singularity or to a singularity that spreads out to
infinity at some finite retarded time.

The semiclassical evolution of these two-dimensional
black holes is very similar to that of charged black holes

in four dimensions with a dilaton field [5]. If one sup-
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poses that there are no fields in the theory that can carry
away the charge, the steady loss of mass would suggest
that the black hole would approach an extreme state.
However, unlike the case of the Reissner-Nordstrom solu-
tions, the extreme black holes with a dilaton have a finite
temperature and rate of emission. So one obtains a simi-
lar contradiction. If the solution were to evolve to a state
of lower mass but the same charge, the singularity would

become naked.
There seems to be no way of avoiding a naked singular-

ity in the context of the semiclassical theory. If space-
time is described by a semiclassical Lorentz metric, a
black hole cannot disappear completely without there be-

ing some sort of naked singularity. But there seem to be
zero-temperature nonradiating black holes only in a few

cases, for example, charged black holes with no dilaton
field and no fields to carry away the charge.

What seems to be happening is that the semiclassical
approximation is breaking down in the strong-coupling
regime. In conventional general relativity, this break-
down occurs only when the black hole gets down to the
Planck mass. But in the two- and four-dimensional dila-
tonic theories, it can occur for macroscopic black holes
when the dilaton field on the horizon approaches the criti-
cal value. When the coupling becomes strong, the semi-
classical approximation will break down. Quantum fluc-
tuations of the metric and the dilaton could no longer be
neglected. One could imagine that this might lead to a
tremendous explosion in which the remaining mass ener-

gy of the black hole was released. Such explosions might
be detected as gamma-ray bursts.

Even though the semiclassical equations seem to lead
to a naked singularity, one would hope that this would

not happen in a full quantum treatment. Exactly what it
means not to have naked singularities in a quantum
theory of gravity is not immediately obvious. One possi-
ble interpretation is the no boundary condition [6]:
Spacetime is nonsingular and without boundary in the
Euclidean regime. If this proposal is correct, some sort of
Euclidean wormhole would have to occur, which would

carry away the particles that went in to form the black
hole, and bring in the particles to be emitted. These
wormholes could be in a coherent state described by al-
pha parameters [7]. These parameters might be deter-
mined by the minimization of the effective gravitational
constant G [7-9]. In this case, there would be no loss of
quantum coherence if a black hole were to evaporate and
disappear completely or the alpha parameters might be
different moments of a quantum field a on superspace
[10]. In this case there would be effective loss of quan-
tum coherence, but it might be possible to measure all the
alpha parameters involved in the evaporation of a black
hole of a given mass. In that case, there would be no fur-
ther loss of quantum coherence when black holes of up to
that mass evaporated.

I was greatly helped by talking to S. B. Giddings and
A. Strominger who were working along similar lines. I
also had useful discussions with G. Hayward, G. T.
Horowitz, and J. Preskill. This work was carried out dur-

ing a visit to Caltech as a Sherman Fairchild Dis-
tinguished Scholar. This work was supported in part by
the U.S. Department of Energy under Contract No.
DEAC-03-81ER40050.

[1] C. G. Callan, S. B. Giddings, J. A. Harvey, and A.
Strominger, Phys. Rev. D 45, R1005 (1992).

[2] S. W. Hawking, Commun. Math. Phys. 43, 199 (1975).
[3] T. Banks, A. Dabholkar, M. R. Douglas, and M.

O'Loughlin, Phys. Rev. D 45, 3607 (1992).
[4] J. G. Russo, L. Susskind, and L. Thorlacius, Report No.

SU-ITP-92-4 (unpublished).
[5] D Garfink. le, G. T. Horowitz, and A. Strominger, Phys.

Rev. D 43, 3140 (1991).
[6] J. B. Hartle and S. W. Hawking, Phys. Rev. D 28, 2960

(1983).
[7] S. Coleman, Nucl. Phys. B310, 643 (1988).
[8] J. Preskill, Nucl. Phys. B323, 141 (1989).
[91 S. W. Hawking, Nucl. Phys. B335, 155 (1990).

[10] S. W. Hawking, Nucl. Phys. B363, 117 (1991).

409


