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Semiclassical Propagation: How Long Can It Last?
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The Van Vleck-Gutzwiller propagator is a fundamental quantity in semiclassical theory whose validi-

ty was recently demonstrated to extend beyond the time previously thought feasible, i.e., well past the
time after which classical chaos has mixed the phase space on a scale smaller than Planck's constant.
Little justification was given for this seeming contradiction of the usual vision of semiclassical errors.
Though perhaps nonintuitive, we find that standard arguments, properly applied to chaotic dynamics, do
ex pl a i n t he long-t i me ace u racy .

PACS n umbers: 03.65.Sq, 03.40.K f, 05.45.+h

Semiclassical approximations to the Schrodinger equa-
tion remain important in a large variety of contexts.
They play the dual role of computational tools (when ex-
act calculations are too difficult or unnecessary) and
sources of insight and intuition, even if numerical solu-
tions are available. However, classical chaos often spoils
the utility of semiclassical methods. Gutzwiller [I] gave
a formal connection between periodic orbits (embedded
in chaos) and eigenvalues (the trace formula). Although
the trace formula is not a practical tool and even diver-

gent, it has been the guiding light in the search for more
servicable approaches. A large eA'ort to "quantize
chaos, " over many years, has begun to come to fruition.
Recent progress has been dramatic, in both the time
domain [2-4] and the energy domain [5-8]. Historically,
however, the great bulk of the eAort in semiclassical
methods has taken place in the energy representation.

In 1928, Van Vleck [9] gave the time-dependent coor-
dinate space propagator which was later modified by
Gutzwiller to extend beyond caustics [I ]. The Van

Vleck-Gutzwiller expression is arguably the progenitor of

all other semiclassical formulas: WKB wave functions,
the Gutzwiller trace formula, and other energy domain

quantities are obtained from it by a stationary phase
courier transform from time into energy. It is therefore
manifestly important to understand the accuracy of the

semiclassical propagator and the time scale and mecha-
nism for breakdown, In two rather difTerent chaotic sys-

tems, the baker's map [4] and the stadium billiard [3],
the semiclassical time propagation of localized initial

states was shown to yield accurate dynamics f'or a much

longer time than had been anticipated, based on simple
(too simple it turns out) arguments about the classical
time for mixing on the scale of Planck's constant. The
mixing time for the exponentially unstable dynamics,
such that most cells of size h in phase space are accessed
by a typical initial state, goes as ln(1/h). The reasons for
the good results well beyond the "logarithmic time" were

suggested in the simple, locally linear structures which

develop in the evolving phase space Lagrangian manifolds
(this was actually exploited in the numerical method used

to evaluate the semiclassical expressions). In the stadium
case. some 30000 branches [30000 terms in the sum over
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In this expression, the sum over j is for all trajectories
connecting qo to q in time t, d is the number of degrees of
freedom; the determinantal prefactor is the square root of

the classical probability for the qo
—

q process, and the
phase is the classical action S~ (q, qp, t ). An index v,

based on the caustic structure of the evolving manifold

q(t) is due to Gutzwiller [I]; see also Maslov and
I'edoriuk [12] and a very recent and concise discussion by

Littlejohn [13]. The action St(q, qp,'t) is the time integral
of the Lagrangian

St(q, qo.,t) =J dt'[p(t'). q(t') —H(p(t'), q(t'))] (2)

along the jth classical path (H is the classical Hamiltoni-
'ln).

contributions in Eq. (I ) below] of the manifold passed
through the region of the initial state. The distance be-
tween separate branches of the manifolds was vastly
smaller than the distance across a circular phase space
cell, yet the semiclassical correlation function was accu-
rate.

The often quoted "truth" that structures on a scale
finer than Planck's constant cannot have quantal
significance was thus found to be only half true: Such
fine structures cannot be seen individually in the quantum
amplitudes but collectively they can yield accurate and

usable semiclassical amplitudes.
How is it that the fine structures contain elements of

the correct quantum amplitudes~ Here we show that
proper consideration of the evolving classical phase space
structure, together with standard rules for the domain of
accuracy of semiclassical methods, explains the observed

long time accuracy. It is unnecessary to average the
semiclassical and quantal results to obtain useful compar-
isons, as was done in Refs. [10,11].

The Van Vleck-Gutzwiller formula is [1,9, 12]

C(q, qo', 1 ) = ~~c(q, qo, t)
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Accuracy of semiclassical propagation revolves around
the stationary phase approximation. The key to under-

standing the errors is to regard the initial Lagrangian
manifold as primal [12], representing the semiclassical
Green s function as an integral over all initial momenta
[2, 14] corresponding to the initial state ~qp) at t =0 for
fixed qo. For the Van Vleck-Gutzwiller expression, one
can derive an alternative formulation

G„(q,qp, t) =
4n 6

d/2 f Bp
„dpp Det

po

1/2

q =q (qo. po), p =p«qo. po) (4)

For convenience we specialize to a two-dimensional

phase space. For a chaotic system, the path traced out by
the parametric equations grows exceedingly complicated
as time increases. The Lagrangian manifold
(= [q„p,j) begins to track the homoclinic and heteroclin-
ic oscillations of pieces of unstable manifolds, following
further along their winding arms as time increases.
Nonetheless, we conduct our analysis in terms of stan-
dard results for the accuracy of stationary phase in-

tegrals. The integral, Eq. (3), has stationary phase points
in pp whenever q, (qp, pp) =q. Near a fold in the La-

grangian manifold, two such stationary phase points
coalesce, and in the usual manner the stationary phase in-

tegral becomes inaccurate if the stationary phase points
are close enough together that an area less than h is en-

closed in the sector between the line q and r, .
Figure 1 shows the shape of a segment of the qo=0

manifold near po=0 after several iterations of the stan-
dard map [15], except that we have unfolded the map by
not applying the 2x modulo condition in angle. This has
the advantage of simplifying the structure locally in

phase space; the overlap with a localized state is now ob-
tained by replicating that state periodically, as is shown

by the shaded disk. We consider the Green's function
first, i.e., (q~q, ). The figure has regions blackened out
that violate the area h rule for a particular value of h.
Some of the blackened areas are standard textbook caus-
tics; others are thin "tendrils" [10]. However, no matter
how thin a tendril has become nor how many folds upon
folds have been generated by the dynamics, the sole cri-
terion for accuracy of a given pair of coalescing station-

xexp[ip, q/h+iS(pp, qp', t)/it —
—,
' itrv(pp)],

(3)
where S(pp, qp, t) =S(q„qp,t) —

p, q, and S(q„qp,t) is the
usual coordinate space action and q, is considered to be a
function of po, qo. Note that the sum over separate con-
tributions to the amplitude from ~qp) to ~q) is absent,
since all the stationary phase contributions are included
in the integral over initial values of momentum. After
some time t, the current values of the position and

momentum are given parametrically (in pp for fixed qp)
as

FIG. 1. Upper: Part of the qo=O manifold unfolded in the
angle variable after several iterations. Left: Fragment of the
initial q-manifold after removing "bad" segments for times l, 2,
3, and 4. Right: Detail of the upper diagram showing the
coherent state and the semiclassically inaccurate region in dark.

ary phase points in the integration variable po is their dis-
tance as measured by the phase accumulation of the ex-

ponent between the points in question; this accumulation
should be 2z or greater, which translates into the area h

in the phase plane. Thus, even though the points marked

C, D in Fig. 1 are not separated by 2z, and are generating
inaccuracies if ~q) should happen to cut through those re-

gions, the contribution from A and 8 encloses area
greater than h and is accurate even though the distance
between A and 8 is minuscule on the scale of h ' . Note
that subsequent evolution will fold the Lagrangian mani-
fold further but cannot reduce the area enclosed between
A and 8 (which have been chosen to lie on a stable mani-

fold and will move exponentially closer together). The
Poincare-Cartan theorem of dynamics also guarantees
that the area preservation and phase difference between
A and 8 hold even if the phase plane is a surface of sec-
tion. We emphasize that developing folds, once formed,
remain and collapse upon themselves with further evolu-
tion while preserving their h area. This has the eA'ect

that caustic behavior becomes increasingly nonlocal.
As a global measure of the accuracy of the semiclassi-

cal propagator, we adopt the following criterion: Ranges
of po which contribute to such caustic zones are eliminat-
ed, and the fraction F„ofinitial pp remaining good con-
stitutes a figure of merit. This is a reasonable measure,
because all "good" regions translate into pieces of the
evolving Lagrangian manifold which yield accurate am-
plitudes.

At first it would seem that the good regions of initial po
would disappear exponentially fast, since the folds and
thus the caustics will proliferate exponentially. However,
since the length of the manifold is increasing exponential-
ly in tandem with the folds (typically with the same ex-
ponent), folds which develop later each correspond to an
exponentially smaller piece of the initia1 range of po. Fig-
ure 1 illustrates how the ranges of good initial po become
more and more like a Cantor set.

In coordinate space, the inaccurate regions of overlap
are almost everywhere if one considers (1) the black re-
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gions showing violation of the area h rule in the coordi-
nate space amplitude, and (2) the modulo 2tr condition,
which folds Fig. 1 over on itself. Also, it should be noted

that diffraction errors on the "dark side" of the black re-

gions extend the region of inaccuracy. Still, the Van
Vleck-Gutzwiller Green's function can accurately propa-
gate states: In spite of its failure in coordinate space, F ig.
2 shows that a coherent state, represented by the disk, is

faring quite well. Propagation of an extended state in

amplitude space by explicitly integrating over the badly
behaved semiclassical Green's function thus works. The
major part of the correlation function (a~q, ), where ~a) is

the coherent state is coming from the replicas on either
side of the center, and these are entirely in "safe" zones.
The zones of poor amplitude for a "circular hp =hq"
coherent state are reasonably estimated by a superposi-
tion of the p and the q error zones, If a coherent state
comes too close or enters such a zone, it will yield some-

what inaccurate amplitudes, although the magnitude of
the error cannot climb to very large values as it does in

coordinate or momentum space because of singularities in

the Van Vleck-Gutzwiller determinant ~

From the phase space, Lagrangian manifold analysis it

is quite clear that the accuracy of semiclassical ampli-

tudes is very nonuniform; it would be possible to find

inaccurate regions almost immediately, while other zones

are well behaved far past the logarithmic time. Very

often, smooth state correlation functions are physically
the desired quantity; other times, as when determining

energy eigenvalues, for example (by Fourier transform of
a correlation function [3]), one has a choice of states.
This makes the present results of far-reaching conse-

quence for applications.
We turn to the dependence of the fraction F~ on h. At

a fixed time, a finite number of folds will have developed.

As h--- 0, F~= 1. For a given fold, suppose we trans-

form canonically to the coordinate system p', q' so that

the fold is aligned along the q' axis, This gives, to second

order in po, q'=)+apo+Ppo2, p'=a'po. The line corre-

sponding to ~qo) is now rotated by the transformation,

and cuts the fold at an angle. If the area enclosed is h,
the range of po corresponding to "bad" parts of the fold is

easily shown to go as h ', at least for sufficiently small h,
where the folds are isolated and the quadratic expansion
in po holds. This dependence has been checked for the
standard map; see Fig. 3.

The time dependence of F~ is more problematical and

system dependent, but we can make some headway by u»-

ing the Smale-like horseshoe construction as;& model of
the tangles developing in the Lagrangian manifold. Con-
sider a p-like (horizontal) Lagrangian manifold which

folds once to a U shape, lying on its side, making one

caustic in coordinate space. After compression by a fac-
tor of 2 and stretching by the same factor, it is folded

again, making a total of three caustics. The nth cycle
yields 2"+' —

I total caustics, but the stretching by the
factor 2" means that each successive caustic spans a

smaller range of initial manifold, by a factor &
". A con-

stant fraction of the initial manifold therefore lands in

caustics at each step, whether or not it has previously
been part of another caustic. Thus the fraction removed

is not confined just to the remaining good regions of the
initial manifold, but is applied apparently at random to
the whole of the initial manifold. The differential equa-
tion describing this removal procedure is

(s)

where X is the Lyapunov exponent and a a system-
dependent proportionality constant. Thus the good initial
manifold disappears relatively slowly and the half-life for
good semiclassical propagation scales as A

The area rule leads to the remarkable conclusion that
stronger chaos may actually help the semiclassical accu-
racy by producing larger folds with more area enclosed.
This might lead to the worry that the generic "soft"
chaos systems would be problematical, but some recent
calculations show good agreement though much more
st udy is req u i red.

The present Letter reconciles the standard theories of

semiclassical mechanics with the intriguing lIindings of
unexpected long time accuracy for chaotic systems. The
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F'IG. 2. Comparison of an exact quantum and semiclassical
calculation of C(t) =la~pa(t)) for the standard map (K =2.14).
The semiclassical is the dashed line and the quantum is the
solid line. The initial state is the p state at 0; the coherent state
was localized at .co=a, p0=0, and A =0.001 59.
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HG. 3. The fraction F~ of the "good" manifold remaining in

~pa) is shown as a function of h for di(Terent iterations of the

mapping (t = l to 5).
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understanding of the source of errors, in our case the
"lack of errors, "

opens a new door in the field of applica-
tions of semiclassical techniques for classically chaotic
systems. Perhaps of more importance is to realize that
with so much research emphasis on semiclassical tech-
niques in the energy domain, its fundamental precursor,
the time Green's function, still deserves far more explora-
tion.

We acknowledge important discussions with P. W.
O' Connor. This research was supported by the National
Science Foundation under Grant No. CHE-9014555.
One of us (M.A.S.) acknowledges support from the Min-
isterio de Educacion y Ciencia of Spain.

[I] M. C. Gutzwiller, J. Math. Phys. 12, 343 (1971), and
references therein; Chaos i n Classical and Quantum
Mechanics (Springer-Verlag, New York, 1990).

[2] E. J. Heller, J. Chem. Phys. 94, 2723 (1991).
[3] S. Tomsovic and E. J. Heller, Phys. Rev. Lett. 67, 664

(1991).
[4] P. W. O' Connor, S. Tomsovic, and E. J. Heller, Physica

(Amsterdam) 55D, 340 (1992); P. W. O' Connor, doc-
toral dissertation, University of Washington, 1991 (un-
published).

[5] P. Cvitanovic and B. Eckhardt, Phys. Rev. Lett. 63, 823
(1989).

[6] G. Tanner, P. Scherer, E. B. Bogomolny, B. Eckhardt,

and D. Wintgen, Phys. Rev. Lett. 67, 2410 (1991); R.
Aurich, C. Mathies, M. Sieber, and F. Steiner, Phys. Rev.
Lett. 6$, 1629 (1992).

[7] M. V. Berry and J. P. Keating, J. Phys. A 23, 4839
(1990).

[8] E. B. Bogomolny, Comments At. Mol. Phys. 25, 67
(1990).

[9] J. H. Van Vleck, Proc. Natl. Acad. Sci. U.S.A. 14, 178
(1928).

[10] M. V. Berry, N. L. Balazs, M. Tabor, and A. Voros, Ann.
Phys. (N. Y.) 122, 26 (1979).

[11]Z. V. Lewis, Ph. D. thesis, University of Bristol, 1982 (un-
published); see also M. V. Berry, Ann. N. Y. Acad. Sci.
357, 183 (1983).

[12] V. P. Maslov and M. V. Fedoriuk, Semiclassical Approx
imations in Quantum Mechanics (Reidel, Dordrecht,
1981), English translation.

[13] Robert G. Littlejohn (to be published).
[14] W. H. Miller, J. Chem. Phys. 53, 1949 (1970); 53, 3578

(1970); W. H. Miller, Adv. Chem. Phys. 25, 69 (1970).
[15] The standard map is a 2D mapping of the cylinder onto

itself defined by the following equations: p„+]=p,
+Ksin(x„),x, +~ =x„+p,+~ (mod2x). The parameter K
determines the chaoticity of the mapping. We selected
K =2.14 in the calculations shown in this Letter. For in-

formation on the quantized version see Chirikov's contri-
bution in Chaos and Quantum Physics, Proceedings of
the Les Houches Summer School, Session LII, edited by
M.-J. Giannonni, A. Voros, and J. Zinn-Justin (Elsevier,
New York, 1991), and references therein.

405




