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A set of exactly solvable one-dimensional quantum-mechanical potentials is described. It is defined by
a finite-difference-differential equation generating in the limiting cases the Rosen-Morse, harmonic, and

Poschl-Teller potentials. A general solution includes Shabat's infinite number soliton system and leads

to raising and lowering operators satisfying a q-deformed harmonic-oscillator algebra. In the latter case
the energy spectrum is purely exponential and physical states form a reducible representation of the

quantum conformal algebra suq(1. 1).
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where primes denote derivative with respect to.x. Taking
first integrals

I 7 2W„'+ W„+]+W; —W„+] =&.„+], (2)

where A-. „are some constants, we define 1V+ I Hamiltoni-
ans

2H„=p +U„(x), p =——i d/dx .
(3)

U„(x) = W —W'„'+ k, U„,(x) =U„(x)+ 2 W, ', (x)

An arbitrary energy shift parameter ko enters all poten-
tials U„(x).

Notorious supersymmetric Hamiltonians are obtained

by unification of any two successive pairs H, , H„+ l in a

diagonal 2X2 matrix [4]. Analogous construction for the

Lie algebras are among the cornerstones of modern

physics. They have an enormous number of applications
in quantum mechanics and, in particular, put an order in

the classification of exactly solvable potentials. "Quan-
tized, " or q-deformed, Lie algebras (also loosely called
quantum groups) are now well-established objects in

mathematics [I]. Their applications were found in two-

dimensional integrable models and systems on lattices.
However, despite much effort quantum algebras do not

yet penetrate into physics on a large scale. In this paper
we add to this field and show that a q-deformed har-
monic-oscillator algebra [2] may have straightforward
meaning as the spectrum-generating algebra of the

specific one-dimensional potential with exponential spec-
trum. This result shows that group-theoretical content of
exactly solvable models is not bounded by the standard
Lie theory.

Recently Shabat analyzed an infinite chain of' reAec-

tionless potentials and constructed an infinite number sol-

iton system [3]. The limiting potential decreased slowly

at space infinities and obeyed peculiar self-similar behav-

ior. We will present corresponding results in slightly

different notations. We denote the space variable by x
and introduce JV superpotentials W„(x) satisfying the fol-

lowing set of second-order differential equations:

(W„'+W„'+, +W„' —W„'+, )'=O, n=O, . . . , N —I, (I)

whole chain (3) was called an order N parasupersym-
metric quantum mechanics [5,6]. In the latter case, rela-
tions (I) naturally arise as the diagonality conditions of
the general (N+ I ) x (N+ I )-dimensional parasupersym-
metric Hamiltonian. We do not use these algebraic con-
structions here and consider operators H„on their own

ground.
If W„(x)'s do not have severe singularities then the

spectra of operators (3) may differ only by a finite num-

ber of lowest levels. Under the additional condition that
the functions

H, y„"'(x)= E„y,',"(x), E, = —g I, ,
i=0

(s)

n =0, 1, . . . , JV —1,
where the subscript n enumerates levels from below. In

this case (4) represents the ground-state wave function of
H„ from which one can determine the lowest excited
states of H~, j & n, e.g. , the eigenfunctions of Ho are
given by

q,',"'(x) (p+fW )(p+fW ) . . (p+/W„, )qo" . (6)

Any exactly solvable discrete spectrum problem can be

represented in the forms (2)-(6). Sometimes it is easier
to solve the Schrodinger equation by direct construction
of the chain of associated Hamiltonians (3)—this is the

essence of the so-called factorization method [7-9]. I''or

the problems with only 4 bound states there does not ex-
ist Wtv(x) making Vro normalizable. For example, if
W~(x) =0, then H„has exactly N —n levels, the poten-
tial I.."„(x) is refiectionless and corresponds to an

(,X' —n)-soliton solution of the Korteweg-de Vries equa-
tion.

Let us consider potentials which support an infinite

number of bound states, % =~. In this case one can
derive from (2) the following differential equations in-

volving only one derivative and a tail of W„'s:

W (x)+ W; (x)+ Q ( —
I )'[2W;+;(x)+k;+, ] =0. (7)

yo" (x) =exp —
J W„(y)dy

belong to the Hilbert space Xz one obtains the first N ei-

genvalues of the Hamiltonian Ho
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W'(x)+W (x) —
y +2 g ( —1) q W (q x) =0, (9)

j=l
where y = —PJ=~ ( —1)~k~. Note that reality of super-
potentials does not necessarily restrict the parameter q to
be real —this will appear later. From (9) it is easy to
derive Eqs. (7) and (2) with

k;+~ =y (1+q )q ', i ~0.
The following computation

(io)

y = —P ( —I) k =y (I+q ) g ( —I )jq i=y (11)
j=l j=l

shows that y is a completely arbitrary parameter (an en-

ergy scale) and (10) is self-consistent definition of the
constants k;. Derivation (11) is valid only at ~q~ & I,
which was the restriction of Ref. [3], but if (8) and (10)
are taken as the basic substitutes for (2) then by
definition y is arbitrary and there are no essential re-
strictions on q up to now.

Equation (9) has a certain relation to quantum alge-
bras [1] and corresponding q analysis [10]. In order to
see this we first introduce a scaling operator Tq obeying
the group law

Tqf(x) =f(qx), Tq T„=Tq„,

Tq =T -I, Tl =1.—
I

Then (9) can be rewritten as

(i 2)

W'(x) —W (x) =
y

—2 g ( —I )~(q Tq )~W (x)
j=0

=y 2(1+q Tq) W (x). (13)

Multiplying (13) from the left-hand side by I+q Tq we
obtain the finite-difference-differential equation defining
W(x),

A question of convergence of the infinite sum is delicate
and requires special consideration in each case. Evident
condition W (x) =W' (x) =0, which is still related to
the soliton dynamics, is necessary for rigorous justifi-
cation of (7). Here we shall operate with a formal series
and assume that the initial chain (2) may always be
recovered by adding (7) for i =n and i =n+ I. In order
to find an infinite number of superpotentials [W~] from
(7) one has to relate them to one unknown function via
some simple rule. Following Ref. [3] we take the ansatz

W;(x) =q'W(q'x),

which yields the equation

fl

E =~ gk, = —i y2 q q2n
I =o 1

—
q

(is)

where we chose the undefined constant ko to be ko
= —

y (1+q )/(I —
q ). At negative y it is not possible

to fulfill the ordering and at positive y the parameter q
should be real and lie in one of the regions ~q~ & I or
~q~ & 1. Taking the normalization y =re ~1

—
q ~/

(1+q ) and denoting ~q~ =exp( ~ ri/2), ri & 0, we arrive
at an exponentially small or large bound energy spectrum

E w 2 +gn

What type of the potentials would these spectra corre-
spond to? In order to know this one should solve Eq.
(14). Then everything crucially depends on the normal-
izability of yii in (4) because all other wave functions

are related to it by scaling. Normalizability is in-
sured if W(x) is a continuous function positive at
x +~ and negative at x —~. Under such condi-
tions W(x) has at least one zero and we choose the corre-
sponding point to be x =0, i.e., W(0) =0. Equation (14)
now automatically leads to W( —x) = —W(x) and below
we restrict q to be semipositive. Let us find the solution
of (14) in the Taylor series form near zero. Substituting
an expansion W(x) =g;=ic;x ' ' into (9) we obtain the
following recursion relation for the coefficients c;:

—
l

Ci 2i g Ci —mCmt i 2, Ci y
q '+1 2l 1 m=1

(i7)

which at q =0, y=1 generates Bernoulli numbers B2;,
c; =2 '(2 ' —1)82;/(2i)t. One may say that (17) defines
the q analogs of the Bernoulli numbers [8;]q. Equation
(17) works well for all values of q. At q & 1 it describes

q deformation of the hyperbolic tangent, since at q =0
one has

W'+W =y, W'(x) =ytanhyx,

which is a one-level (soliton) superpotential associated to
the Rosen-Morse problem. At q & 1 one has q deforma-
tion of the trigonometric tangent which is recovered in
the limit q

due to the convergence problems.
Let us try to find the quantum-mechanical spectrum

generated by the self-similar potential Ua(x) associated
with (14). Suppose that the eigenfunctions (4) are nor-
malizable. Then the potential U;~~(x) contains one ei-
genvalue less than U;(x), i.e., there should be the follow-

ing ordering of levels

Eo&E]«E,

W'(x)+ W (x)+qW'(qx) —
q W (qx) =y (1+q ), W' —W =y, W(x) = ytan yx . (19)

(i4)
which is nothing else than the first iteration of superpo-
tentials. The whole infinite chain (2) is thus generated by
(14). This observation removes ambiguities arising in (9)

This superpotential creates an infinite-level Poschl-Teller
potential Ui(x) with the restricted region of coordinate
definition: —ir & 2yx & ir. On this finite cut Uo(x) =0
presents an infinitely deep potential well. If one sets y =0
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simultaneously with q or q
' then conformal superpoten-

tials, W(x) =+' I/x, are emerging. Finally, at q
= I one

gets a standard harmonic-oscillator problem.
If q&0, 1,~, there is no analytical expression for W(x)

but some general properties of this function may be found
along the analysis of Ref. [I], where it was proven that
for q & 1 superpotential is positive at x =+~. In this
case the required normalizability condition is fulfilled and
the relation (16) with upper signs really corresponds to
physical spectrum.

At q & 1 the radius of convergence of the series
defining W(x) is finite, r, . & ~. From the inequalities

y- q- —
1 q-' —

1

q +1 q'+1
we have 0&c;' &c; &c;, where c;' are defined by
rule (17) when the q factor on the right-hand side is re-
placed by y /co and I, respectively (ci' =ci). As a re-
sult, I & 2yr, /z & co/y, which means that W(x) is smooth
only on some cut at the ends of which it has singularities.
From the basic relation (14) it follows that there is an
infinite number of simple "primary" and "secondary"
poles. The former ones have residues equal to —

1 i.nd

their location points x„, tend to z(m+ —. )/y, m 6 Z, at

q
—~. Secondary poles are situated at x =

q x„„
n E Z+, and corresponding residues are defined by some
algebraic equations. We are thus forced to consider
Schrodinger operators (3) on a cut [ —xi, x~] and impose
boundary conditions y„' (+ x~) =0 although the poten-
tial Uo(x) is finite at x = + xi. The structure of W(x)
leads to yii (+xi) =0; i.e., yii is the true ground state
of Hp. Note, however, that the spectrum F„ for such

type of problems cannot grow faster than n at n-
in apparent contradiction with (16). This discrepancy
is resolved by the observation that already Wi (x)
=qW(qx) has singularities in the interval [ —x~, x~] so
that only Ho and Hi are isospectral in the chain (3).
Hence, the positive sign case of (16) does not correspond
to the real physical spectrum of the model.

The number of deformations of a given function is not
limited. The crucial property preserved by the above
presented q curling is the property of exact solvability of
"undeformed" Rosen-Morse, harmonic-oscillator, and
Poschl-Teller potentials. It is well known that potentials
at infinitely small and exact zero values of a parameter
may obey completely different spectra. In our case, de-
formation with q & I converts the one-level problem (18)
with Eo= —

y /2 into an infinite-level one with exponen-
tially small energy eigenvalues (16). Whether one gets
an exactly solvable potential at q & 1 is an open question
but this is quite plausible because at q =~ a problem
with the known spectrum F„=I (n+ I ) /2 arises.

In the standard dynamical symmetry approach the
Hamiltonian of a system is supposed to be proportional
either to the Casimir operator or to a polynomial com-
bination of the generators of some Lie algebra [8, 11]. As
a result, the energy eigenvalues are determined by ration-
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al functions of quantum numbers. This means that one
does not go out of the universal enveloping algebra. q de-
formation of the universal algebra works with functions
(exponentials) of' generators and, as was mentioned, ac-
counts for the presented exponential spectra.

Indeed, substituting superpotentials (8) into relation
(6) one finds the raising and lowering operators

ifI 4 ALA
—

y H

(20)
A+ =q'i [p+iW( x)]Tv, A =q 'i

Tv [p —iW(x)],

Introduction of the formal number operator

, Wqto'=nato', [A, A -]=+ A — (22)
InH o/Eo

lnq

completes the definition of the q-deformed harmonic-
oscillator algebra in the particular form [2]. The quan-
tum conformal algebra su~(1, 1) is realized as follows
[I 2],

K+ = q —rv/~A+

y(I + q
')

K- =(K')', K, =-,' (A+-, ), (23)

[KO, K —] =+'K —,
4Kp —4kp

[K',K ] = —q

i.e., it is a dynamical symmetry algebra of the model.
Generators K — are parity invariant and therefore even

and odd wave functions belong to different irreducible
representations of su&(l, I ).

In order to generalize the basic equation (14) we intro-
duce an additional parameter s into the superpotential,
W=W(x, s), and assume that Tv in (20) is a generalized
shift operator,

T~W(x, s) =W(qx+a, s+ I), (24)

where q and a are parameters of affine transformation.
Although A + is not Hermitian conjugate of A any-
more we force them to obey q-oscillator-type algebra

A+ —
q A+A =C(s), A —C(s) =C(s+ 1)A —,

where C is some function of s. The resulting equation for
the superpotential

W'(x, s —
I )+qW'(qx+a, s)+ W (x, s —

I )

—
q W (qx+a, s) =C(s)

may be called the generalized shape-invariance condition

For real q and y the operators A —are Herrnitian conju-
gates of each other. Equation (14) insures the following
q-commutation relations:

A+ —
q A+A =y (I+q ), HOA —=q — A —Ho.
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(cf. [9]).
We define a Hamiltonian 0 as follows:

H = —,
'

A +A + F(s), q F(s) —F(s —I ) = —, C(s),

(26)

where the finite-difference equation for the function F(s)
is found from the braiding relations HA —=q —2 —H.
Now it is easy to generalize formula (15). Suppose that
a wave function yo, 3 @0=0, is normalizable. Then a
tower of higher states Iir„ tx:(A+) "yo gives the energy
spectrum

mations appearing in (25) may be used for the definition
of the q-deformed supersymmetric quantum mechanics
[15]. Second, at complex values of q one has meaningful
dynamical systems which are exactly solvable when q is a
root of order unity [16].

The author is indebted to A. Shabat for communicat-
ing his results prior to publication and for relevant re-
marks. This work was supported by the NSERC of Can-
Hda.

E„=F(s)+ ~z g q
' ' C(s+i) =q "F(s+n), (27)

which can be found by purely algebraic means. If for
some n =IV normalizability of y„ is broken then H has
only A discrete levels. In the above presentation we chose
the simplest form of s-parameter transformation under
the action of the Tq operator. One can easily generalize
formula (27) for an arbitrary change of the variable s in

(24), s —f(s).
To conclude, in this paper we have described an exactly

solvable quantum-mechanical problem where the quan-
tum algebra su~(1, 1) acts on the discrete set of energy
eigenstates scaling their eigenvalues by a constant factor.
In the original version of diA'erential geometric applica-
tions of quantum Lie algebras an underlying space was
taken to be noncommutative ("quantum plane" ) and de-
formation parameter q was measuring deviations from
normal analysis (see, e.g. , Ref. [13]). Here we have com-
mutative space and standard one-dimensional quantum
mechanics but the potential is very peculiar. It represents

q deformation of exactly solvable potentials so that the
spectrum remains to be known but it acquires essentially
functional character.

It is interesting to know the most general exactly solv-
able q-deformed potential. One of the approaches to this
problem consists in repetition of the manipulation de-
scribed in Ref. [14]. Namely, one can take as the
particle's wave function a q-hypergeometric function
multiplied by some weight factor. This would correspond
to the transformation of q-hypergeometric equation to the
form of the standard Schrodinger equation for some po-
tential. Another path to q deformation of known models
is given by Eq. (25) which may have solutions generaliz-
ing those found by the old factorization technique at
q=1, 0=0.

Two final remarks are in order. First, aSne transfor-
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