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We have analytically evaluated, up to fourth order, all logarithmic terms in the perturbation expan-
sion of the magnetization A, for the Kondo model. All nonlogarithmic terms have been evaluated up to
third order. When these results are compared with the claimed universal function At(H/TH) calculated
with the Bethe ansatz, we find that the two cannot be made to agree whatever the form of TH. We con-
clude that such universal functions do not exist.

PACS numbers: 75.20.Hr

Although to many the Kondo problem appears highly
esoteric, it remains a basic test bed for theoretical
methods which would claim to handle infrared-divergent
problems of which there exist many in both condensed
matter and elementary particle physics. And while it is

reasonable to claim that the Kondo problem was solved in
principle by Anderson and co-workers [l], it is Wilson
[2] who provided the first detailed solution using numeri-

cal methods. Some time later the same problem was
solved [3,4] analytically using the Bethe ansatz and there
exists a claim by one of the present authors [5] that exact
results can also be obtained using a certain special self-
consistent parquet approximation.

What is of interest here is an oft repeated claim, which

seems to have been first made by Wilson [2], that the im-

portant properties associated with the model exhibit
universal behavior. Specifically studied in the work

presented here is the universality of the magnetization JK

at zero temperature. Universality implies that

JK =Att (H/TH )—,
where H is the magnetic field and TH —D

~ pJ
~

'l

x exp j —l/~ pJ~] is a characteristic scale or Kondo tem-

perature, both specified in energy units; i.e., universality
implies that M(x) is the same function for all reasonable
variants of the Kondo model. All diA'erences between
models are to be accommodated in the scale energy TH.
There are a couple of important caveats. The coupling
constant

~ pJ
~

&& l and the characteristic energy of the
measurement, H for this example, must be much less

than the eff'ective band cutoff' D. In fact H should be
sufficiently small that within the region + H of the Fermi
energy eF, the density of states is Hat.

It is also to be recognized, for the comparison made
here, that there is a nonanalytic relationship between the
coupling constants for the versions of the model solved by
the Bethe ansatz [3] and by Wilson [2]. There is a spe-
cial notation [3]; the Bethe approach implies a cutoff
scheme, denoted D, in which the interacting states are cut
oA outside a certain energy region, while in the S
scheme, it is the noninteracting states which must lie

within an energy D on either side of the Fermi energy eF
(=0 here). Andrei, Furuya, and Lowenstein [3) have

2g 2g l 2g
l

2g +O( 2)
7r z 2 7t z

(2)

Hoivever, despite this nonanalytic relationship between
the coupling constants, it is claimed by the authors [31 of
the Bethe solution that their result is of the same univer-

sality class as the Wilson version of the model, i.e., that
the only real eA'ect of this nonanalytic relationship is the
absence of the factor of (2g/tt)'l or (~pJ~'l ) in their
definition of TH.

We have tested this universality hypothesis by perform-
ing very careful perturbation expansions using standard
perturbation theory for the X) scheme and comparing this
with the corresponding terms generated by an expansion
of the Bethe expression for the high-field regime.

We have taken the analytic expressions for the Bethe
approach as a definition of the function M(x). With
some choice of TH this universal M(x) should, when ex-
panded, generate any valid perturbation expansion to all

orders. We have calculated all logarithmic terms in such
an expansion for the usual 2) scheme up to O(g ) and all

nonlogarithmic terms up to O(g ). The relevant form for
the scale, which enters M(H/TH), is

i/2
—( /2g)+ (g) (3)

where a(g) =b~(2g/tt)+b2(2g/tt) + . , i.e., is an ex-

pansion in the coupling constant 2g/tt (:—~pJ~). The
coefficients b~ and b2 are determined by nonlogarithmic
terms which first occur in O(g ) and O(g ). Such
coefficients correspond to next-to-leading and next-to-
next-leading logarithmic quantities. Once a coefficient is

determined, it, in turn, determines the coefficient of all
the similarly logarithmic divergent terms in all orders of
perturbation theory. Specifically, the first coefficient is

determined by the nonlogarithmic terms in O(g ) and in

fact is confirmed by next-to-leading logarithmic terms in

both O(g ), and by our new detailed calculations for

shown that the leading orders of the perturbation expan-
sions agree if the coupling constant 2g/tt (—= )pJ~ above)
in the D scheme is related to the similar quantity 2g/tr in

the X) scheme by
2
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O(g ). However, the second coefficient, corresponding to
a nonlogarithmic term in O(g ), first generates logarith-
mic terms in O(g ); this coefficient is not confirmed by
this least divergent logarithmic term in O(g ). We are
led to the conclusion that the Bethe ansatz and Wilson
solution do not belong to the same universality class. In
fact we suspect that the universality class is very much
smaller than suggested by Wilson; i.e., not only is the
Bethe solution not in the same class but also 2) scheme
models with different densities of states distant from the
Fermi surface correspond to different functions M(x),
etc.

These contentions may appear surprising in view of one
of the present authors' claim [5] to be able to obtain ex-
act results for the same Kondo problem with what
amounts to a self-consistent parquet approximation.
Such an approach can only claim to be good to next-to-
leading logarithmic accuracy. Specifically it is claimed
that such a method yields the exact result for the so-
called Wilson "crossover ratio" W'=2m(n/2e) "i /I (n/2),
for the compensated case when n =2S. What the present
authors believe to be true is that 8" is a universal con-
stant, and as is required by Ward identities [6] the Wil-
son ratio R =n/(n —1), even though there do not exist
universal functions such as M(x), or the resistivity p(x),
etc. That is, the large-energy-scale perturbative and low-

energy so-called strong-coupling results, when H, T & T~,
are both determined by the self-consistent parquet ap-
proximation. In fact, it is suggested that the label
"strong coupling" is more appropriate to the intermediate
regime when H, T- Tx, and when all orders in perturba-
tion theory are required to determine most physical quan-

tities such as M(x), p(x), and Cv(x). It seems likely
that all modifications to the model which can change the
relationship between the coefficients of next-to-leading
and next-to-next-leading order logarithmic terms change
the form of the would-be universal functions, e.g. , M(x),
p(x), and Ci (x), without (usually) changing 8" and R.

Despite the fact that there exist any number of com-
puter programs which when given a set of, e.g. , Feynman,
rules can numerically sum perturbation series, the work
described here involves the analytic evaluation of all con-
tributions to fourth order. We chose to perform analytic
calculations since, erst, easy to make estimates readily in-
dicate that very high precision is needed to pick out the
sought for coefFicient of the next-to-next-leading logarith-
mic term in fourth order. The difficulty of such a numer-
ical approach is best illustrated by Wilson [2] who did
perform such calculations. Unfortunately his results can-
not be used for the present purpose since he did not
evaluate his modified D(pJ) within his scheme. [In
effect, he did not evaluate the constant term in O(g ).]
Second, analytic calculations are more transparent and
easier to confirm by others. Full details of the calcula-
tions of the fourth-order terms are prohibitively long to
be reproduced here; a fairly complete presentation is
available [7].

The method and notation used correspond to an appen-
dix of Ref. [3], in particular we will use the notation
2g/ir for the magnitude of the coupling constant when

evaluating our perturbation expression in the 2) (non-
Bethe) scheme. We have evaluated the necessary addi-
tional terms in the expansion of the Bethe M(x) and ob-
tain

1 1 g 1 2z 47K S
Af;(H ) TH) =S 1

——z+ —(ln2)z ——In 2+ln2 —1+
2 4 8 3 3

z 3+ (4)

where the invariant charge z is defined by

1 1 H———lnz =ln
z 2 TH

With

(5)

TH =—Sexp — +—ln +ho+bi +bz
1 m 1 2g 2g
2 2g 2 8' 7r

2g (6)

+ Z4

Zp

Z3

ZQ

this set of equations defines the universal M(x) to sufficient accuracy for
Following the appendix of Ref. [3], a standard perturbation expansion

Zl ZP 1 Z) Z3 Z]9= —TlnZ= —T lnZQ+ + +
Zp Zp 2 Zp Zp Zp

r

Zl 1 Zq Z]
ZQ 2 Zp Zp

the present purposes.
is made for the free energy, i.e., written as

r 3
Zq 1 Zl+-
ZQ 3 Zp

4-
Zq 1 Zl + 0 ~ ~

Zp 4 Zp
(7)

where Z„corresponds to the nth-order term in the perturbation expansion for the partition function Z. The magnetiza-
tion is obtained by evaluating the derivative 8/BH~H ii, whence the well-known second-order term is, in the present no-
tation,

=(2g/m) S[ln(H/D)+ln2],
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while the third-order term becomes
3 r

2g S ln —+—ln —+2ln21n —+—+In2+In 2+ +S +SH 1 H H 1 2 Z 2 X 3 Z

D 2 D D 4 12 4 24
(9)

(IO)

We are not aware of any existing calculation with which to compare the constant term in this expression. The final re-

sult for the fourth-order expression is

4 r

(4) S In —+—ln —+ 31n2 In —+—In —+—In21n —+ ln 2 In
H 5 2 H H 1 H 7 H 11 2 H

z D 4 D D 2 D 2 D 4 D
r

7z H 2 z H 3 1 2 H 7z H+ In — +S In — +S —ln 21n —— ln
24 D 2 D D 24 D

We have not evaluated the constant in this order. [It is to be emphasized, again, that neither of the above results may
be compared with the numerical evaluation of this series by Wilson, since an expression for his D(pJ) is needed, and

anyway his "onion" scheme implies a diA'erent cutoA' procedure. ] We were initially concerned by the presence of even

terms in the spin magnitude S since we expected that the transformation S —S corresponds to H —H and should
reverse the sign of M. However, it is observed that, e.g. , the effective cutoH' D, when expanded in g, might contain the
invariant S(S+ I) which can generate terms even in S. We have confidence in this result since all but the next-to-
next-leading logarithms have the coefficient expected if M(x) were to be universal and it is these same coefficients which

also determine that of the weakest divergence of interest. Also essentially the same method of evaluating these weakly
divergent terms was used to evaluate the next-to-leading terms in the third order; again these terms conform with the
expectations of universality.

The first constant

bp= —
—,
' ln2

in TH has already been determined. The second constant

1 1 z 3x nI, = ——ln2 ——+
2 2 12 8 4

(12)

(13)

is therefore our principal result. When substituted into the Bethe expansion for M(x), we obtain the fourth-order term,
r 4 r r r

(4) 2g 3 H 5 2 H 1 H 2 HS ln —+—ln —+—ln —+3ln 2ln —+3ln21n —+41n21nH H
D 4 D 2 D D D D

n H z H z H+ In —+ S ln —— S In —+const ~,
3 D 2 D 4 D

which clearly does not correspond to our direct perturba-
tion calculations in this order.

We conclude that, at least, the Bethe and Wilson solu-

tions for the compensated case of the Kondo model do not
belong to the same universality class.
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