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Optical Activity of Selenium: A Nearly First-Principles Calculation
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For optical activity, we have derived a band-theoretic formula and evaluated it within the self-energy-
corrected local-density-approximation approach using a plane-wave basis. For optically uniaxial, tri-
gonal selenium, we compute (i) p, the optical rotatory power for propagation along the optic axis, (ii)
g», a gyration tensor component, (iii) d~~ for second-harmonic generation, and (iv) s, and e„ the two

dielectric constants. These comprehensive results are the first reported in the literature for any crystal,
and they agree with some, but not all, available measurements which are often not consistent with each
other.

PACS numbers: 78.20.Ek, 31.20.—d, 77.20.+y

When light travels through a medium, the material
response may be characterized by the induced polariza-
tion. The polarization P may be written as a double
power series in the electric field E and the wave vector of
propagation q:

Pt EJ'+gtjt EJEt+ ' ' ' +trhytqJEt+ ' . , (1)V (2)

where a is the dielectric tensor, g( ) =2d is the nonlinear
susceptibility for second-harmonic generation, and g is
the optical activity tensor [1]. The expansion unifies a
host of optical phenomena, including the dielectric func-
tion, second-harmonic generation, optical activity, and
higher interactions such as third-harmonic generation
[O(E )] and second-harmonic generation in centrosym-
metric crystals [O(qE )].

Optical activity is the primary subject of this paper.
We present (i) a brief discussion of the phenomenology of
optical activity; (ii) a review of the method [2,31 we have
used successfully for s and g( ), with new calculations for
selenium; (iii) a formula for evaluating the optical activi-

ty tensor, with a discussion of our neglect of local-field
corrections; and (iv) the results of a calculation of optical
activity directly from the band structure on a nearly
"first-principles" basis, with comparison to experiment.
We are not aware of any similarly comprehensive calcu-
lation in the scientific literature for any crystal.

Theoretically, optical activity is of interest because it is
the simplest phenomena which requires a transverse wave
(i.e., use of the electromagnetic vector potential A) for its
description. We select trigonal selenium for study be-
cause it has a simple crystal structure (three atoms per
unit cell forming a helix), it is a semiconductor, and has a
relatively [4] large (and hence measurable) optical rotary
power.

Circular birefringence —that is, optical activity —has,
in the absence of linear birefringence, eigenmodes of left
and right circularly polarized light. This condition —cir-
cular, but no linear, birefringence —is achieved for propa-
gation along the optic axis of a uniaxial crystal. In the
case of trigonal selenium, the c axis (a threefold rotation
axis) is the optic axis of this uniaxial crystal [5]. The

p- ,' aco(n—p —n )-a'ro-'riz3t, (2)

where e is the photon energy, a is the fine-structure con-
stant, and n+ are the indices of refraction for left (+)
and right ( —) circularly polarized light [6].

Our method is a simple modification of the Kohn-Sham
local-density approximation (LDA). The LDA is by far
the most widely used approximation used for the calcula-
tions of properties of real solids; the list of its successes is
both long and familiar [7]. Nevertheless, by the early
1980s it became apparent that the local-density approxi-
mation underestimated band gaps in semiconductors by
about 1 eV. This observation catalyzed the implementa-
tion [8-10] of the GW approximation to quasiparticle en-
ergies proposed by Hedin [11]. In brief, the GW approxi-
mation is Hartree-Pock theory with dielectric screening.
GW band gaps are accurate within about 0.1 eV of the
experimental values. Curiously, it was discovered that
the LDA wave functions were in nearly perfect agree-
ment with the GW quasiparticle wave functions even
though the eigenvalues could differ by about 1 eV. Given
the central role played by dielectric screening in the
theory, it was troublesome that it was not immediately
apparent how to use the GW eigenvalues to calculate an
improved dielectric function; the GW eigenvalues would
lead to an apparent overcorrection of the dielectric func-
tion from too large (in LDA) to too small [2,9,12].

In response to this challenge, some of us proposed a
new effective Hamiltonian [2]

+k Hk +~keek (3)
for the calculation of dielectric response. The LDA
Hamiltonian is modified by a self-energy correction,
known colloquially as a "scissors operator, " which shifts
the conduction-band eigenvalues upward by an amount
hk while preserving the eigenfunctions. It has proved
adequate to take h, to be independent of k. Fundamental-

ly, momentum matrix elements arise from the expression

plane of polarization of linearly polarized light propaga-
ting along that axis will be rotated by an amount p per
unit length. The optical rotary po~er p is related to the
optical activity tensor g by
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VkHk. If Hk= 2 (k+p) + V(r), then VkHk=k+p [13].
The self-energy operator changes, i.e., renormalizes, the
matrix elements via p~ p+Vk(hkP, k). Even if 6 is in-

dependent of k, the projection operator P,~ is not, and
this leads to important theoretical consequences.

This theory has demonstrated agreement with experi-
mental values of the dielectric constant within 4% for the
following materials: Si, Ge [2], A1P, A1As, GaP, GaAs
[3], and a-quartz [14]. The predictions have been suc-
cessfully extended to second-harmonic generation in III-
V semiconductors [3], and the elasto-optic tensor in Si
[15].

For this work, we performed a fully converged LDA
ground-state calculation, using the ab initio pseudopoten-
tial of Hamann [16] and the Kleinman-Bylander con-
struction [17]. The LDA ground state is determined with

the method of Teter, Payne, and Allan [IS]. We work
with a plane-wave energy cutoff of 10 hartrees and 144 or
410 integration points in the irreducible Brillouin zone
for the symmorphic subgroup of the point group of seleni-

um, which is one-quarter of the full Brillouin zone. We
choose a self-energy constant of 6=1.1 eV to align our
LDA band gap of 1.2 eV within the experimental values

of 2.0-2.3 eV [191. Methodologically, we would prefer to
take the result from a GS'calculation, but none is avail-

able. The b, value of 1.1 eV is in the range of eigenvalue

shifts reported for other semiconductors [9,10].
Results for the dielectric constant calculation are

given in Table I. The experimental situation is more fluid

than in the case of the cubic semiconductors. Neverthe-
less, our calculation for the static limit of the dielectric
constant is within the relatively broad experimental range
suggested by Palik [20].

Results for second har-monic generation are presented
in Table II. In contrast to the III-V semiconductors [3],
the local-field correction leads to an enhancement in

selenium. For this component, the agreement with exper-
iment is quite acceptable: We find agreement within stat-
ed error bars with two of the four experiments. The most
discrepant result is due to Sherman and Coleman [21]
who suggest that their measurement is strongly affected

by the presence of a lattice resonance near 43 meV (2S
pm) which is not captured by our fixed-lattice calcula-
tion.

The optical activity tensor was derived by expanding
the polarization in the wave vector q and the vector po-
tential A (in the gauge in which the scalar potential van-

ishes). For the case of insulators, we derive and exploit a
sum rule to avoid a divergence as m 0; the form
presented in Eq. (4) is restricted to insulators. We
display our result using a superscript notation due to
Aspnes [22],

~ qCV + ~CCV + q
UVC (4a)

ri'Ji'=4«o J dk Z lm[(nklHk (0„'k(ro)Hk jl Ink& —i l I,
n

9~'(' =«&o„r dkZlm[(«~Hk, ;0;k(ro)Hk IG,"kHk, ~nk&
—i l I,

n

(4b)

(4c)

ri(gi' S«o„dk+1m[(nk~Hk J ~mk&(mk~Hk;0'k(co)

x [ro —(e k
—Hk) —(e„k—Hk) —(e k

—Hk)(e„k —Hk)]Q„'k(ro)Hk ~~nk)], (4d)

where Qo is the unit cell volume divided by (2x), BZ is
the full Brillouin zone,

Jl A

Hg;=i. VgH)„Hgg) =i V)j VI,HI, ,

0„'k(ro) =G„'k(ro)G„'k( —ro)G„'k(0),

and G„'k(ro) is the independent-particle Green's operator
for the state ~nk) at frequency co, i.e.,

Gc ( ) g Imk)(mkl
m &nk &mls. +~

The symbols c and v refer to the conduction and valence
bands, respectively. Each term of g;~I is antisymmetric in

i and l. In deriving this expression we have treated the
electrons as independent and moving in an effective one-
body potential.

The local field corrections -to optical activity are
neglected. Local-field corrections to the dielectric and
second-harmonic response for elemental and simple com-

pound semiconductors are typically on the order of 10%.
Our results for selenium are consistent with this rule, as
seen in Tables I and II; the second-harmonic local-field
correction is surprisingly large at +27%. We suppose the
local-field correction to optical activity will be about the

LDA 1.1 eV

Qe 8~ Expt.

Ordinary
Extraordinary

1 1.8
16.4

10.3
15.2

9.0
12.3

7.9
1 1.5

6.2-8.4
10.2-13.7

TABLE I. The static dielectric constants of selenium. For

the ordinary value, the polarization is in the basal plane, and for

the extraordinary value, it is directed along the c axis. The

designation epp implies the neglect of local-field corrections, and

s[ indicates their inclusion. The experimental data are a lo~-

frequency extrapolation of the IR-visible data as suggested by

palik [20l.
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LDA
1.1 eV

Expt. [29]
Expt. [25]
Expt. [28]
Expt. [21]

(meV)

0
0

113
113
113
43

(pm)

10.6
10.6
10.6
28

d long»
(pm/V)

179
78

dpi

(pm/V)

220
97

210 +'42
97+ 25
80+ 42

1840 ~ 880

TABLE II. The nonlinear susceptibility for second-harmonic
generation di& 2 giii. Only the magnitude is reported, since
there is ambiguity in the literature concerning the sign conven-
tions. The designation dpi"I is a calculation neglecting local-
field corrections.

200

150

e4

E
~ 100
&0

3& So

~ Expt, Ref. 26

Expt, Ref. 84

o Expt, Ref. 85

d=1.1 eV (410 kpt)

d=l. 1 eV (144 Rpt)

Lnd (144 ~t)

same size.
The putatively small local-field correction is formally

diScult to compute. Optical activity is an intrinsically
transverse phenomenon, so one must use the electromag-
netic vector potential. The usual practice in dielectric
response calculations is to work with a scalar potential as
the external perturbation. In particular, the exchange
correlation can be approximated by a linearization of the
LDA about the ground-state density, i.e., by a term
(bV„Jbp)bp. Contributions from this term were includ-
ed in the calculation of the dielectric constant and the
nonlinear susceptibility for second-harmonic generation.
However, to include exchange-correlation effects in the
optical activity calculation requires a knowledge of
BA„Jbj. The density-functional theory of currents and
vector potentials is at a rudimentary state of development
at present [23].

Results for the optical rotatory power p are presented
in Fig. 1. We divide p by ro to remove the trivial fre-
quency dependence given in Eq. (2). We find that our
calculation is in agreement with the data of Adams and
Haas [24] and one of two points measured by Day [25].
Given the uncertainties of the data of Henrion and
Eckart [26] and our theoretical uncertainties (e.g. ,
neglect of local-field corrections, BZ integration errors,
neglect of spin-orbit splitting, the assumption of the con-
stant value 5 1.1 eV) we do not see a conclusive dis-
agreement. We are in agreement with the sign of p as re-
ported by Henrion and Eckart; the others do not report
the sign. The discrepancy between the Adams and Haas
and the Henrion and Eckart data sets is a factor of 2 to 6
depending on the frequency. The origin of this discrepan-
cy is unclear; we note that materials preparation dif-
ficulties have prevented a definitive measurement of even
the dielectric constants.

For frequencies small compared to the band gap [in
fact for (ro/ros, n) « lt we expect g to attain some con-
stant value, leading to p~ co . Our calculated points are
consistent with pcx co' for h, =1.1 eV. The data of Day
may be fitted by p a: m —.

, which is difficult to under-
stand theoretically.

0.0 0.4 0.8 1.2 1.6
Photon Energy cu (eV)

2.0

FIG. I. The optical rotatory power p divided by ro [which is
suggested by Eq. (2)] of selenium for photon energies less than
the direct band gap. We display the LDA result for 144 in-
tegration points (dotted line) and in the self-energy-corrected
result with d I. I eV for I 44 (dash-dotted line) and 410 (solid
line) integration points as a function of the photon energy ro (in
eV). The sign of p is taken to be positive for Refs. [24] and
[2S].

We present our results only up to 1.05 eV. In this fre-
quency regime, our results for the 144 and 410 k points
are within 10% agreement. However, at higher frequen-
cies, this agreement breaks down. Because the integrand
becomes singular at the band gap, our uniform sampling

5X10 i

I 4X10 i
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g 3XI0 i
0

LI 2X10 4
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4
1X10 i

Irpt)

Irpt)

1.20.2 0.4 0.6 0.8 1.0
Photon Energy s& (eV)

FIG. 2. &he gyration tensor component g» amp»2n,
where n, is the ordinary refractive index. For the trigonal point
group, g3f2 is the only independent tensor component other than
the one @23& used to determine the optical rotatory power shown
in Fig. 1.
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method must fail at some frequency.
The prediction for the gyration tensor (5J component

gii is presented in Fig. 2. The self-energy correction to
the LDA prediction reduces gii by a factor of 3 at low

frequencies and grows rapidly as the photon energy ap-
proaches the (wrongly placed) LDA band edge. To the
best of our knowledge, gii has not been measured for
selenium. Ho~ever, the predicted value is the same mag-
nitude as KH2PO4 which has been measured [27].

To summarize, we presented a band-theoretic formula
for optical activity and we have calculated the optical ro-
tatory power for selenium along with a series of related
optical properties: a gyration tensor component, the sus-
ceptibility for second-harmonic generation, and the die-
lectric constants. Our calculations are performed directly
from a nearly first-principles band structure. The experi-
mental input is limited to the dimensions of the unit cell
and a self-energy correction of 1.1 eV to the band gap.
Our calculations are in agreement with some data by Day
[25] and with the measurement of Adams and Haas [24],
but not those due to Henrion and Eckart [26]. For
second-harmonic generation, we find agreement with the
measurement of Day [25] and Patel [28] but not those of
Jerphagnon, Batifol, and Sourbe [29].
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ment of Energy-Basic Energy Sciences, Division of Ma-
terials Research, and the Ohio Supercomputer Center.
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