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Suppressing Chaos in Neural Networks by Noise
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We study discrete parallel dynamics of. a fully connected network of nonlinear elements interacting
via long-range random asymmetric couplings under the influence of external noise. Using dynamical
mean-field equations, which become exact in the thermodynamical limit, we calculate the activity
and the maximal Lyapunov exponent of the network in dependence of a nonlinearity (gain) parameter
and the noise intensity.

PACS numbers: 05.45.+b, 05.20.—y, 47.20.Tg, 87.10.+e

Recently there has been considerable interest in spa-
tially extended dynamical systems such as neural net-
works [1—3], ecological and economical models [4], and
populations of interacting oscillators [5]. Such systems
may be described by a set of coupled difFerential equa-
tions or iterated maps.

In this Letter we show that studying these systems
with parallel discrete dynamics has several advantages
as compared to the continuous time treatment. For par-
allel discrete dynamics the mean-field equations (MFE)
simplify such that explicit solutions can be obtained for
special cases. One could then use perturbation theories
to explore new properties of the system. In addition,
our formalism is suited in a natural way for Monte Carlo
simulations of the MFE [6].

As an example we study the transition to chaos in
a random neural network with infinite-range interac-
tions, which has been studied previously by Sompolinsky,
Crisanti, and Sommers [2] in the continuous time limit. It
will be shown that with our method the previous results
can be reproduced in much simpler form and new results
concerning the dependence of the largest Lyapunov ex-
ponent on noise can be obtained. We note that in general
results obtained with discrete parallel dynamics need not
coincide with those obtained for sequential updating or
continuous behavior [3, 7].

Our model consists of N analog neurons (S,(t)), i =
1, . . . , N, with —1 & S; & 1, where every neuron S, is

4(h)
h=0

(2)

where g ) 0 is a gain parameter. The internal field of
the neuron S; is given by

h, (t) = ) J„S,(t) +(;(t), (1')

jest

with (, as external white noise of zero mean and variance

(((t)4(~)) = &'~' ~t

where the angular brackets denote the "thermal" average
over the noise with intensity o2.

To study the dynamical properties of the network we
start with the dynamical functional approach using the
fact that averaged dynamical quantities can be obtained
by difFerentiation from the following generating function:

connected to all other neurons Ss by couplings J;~, which

are uncorrelated Gaussian random variables with zero

mean and variance [Jz]g = 1/N, where square brackets
denote the "quenched" average over the couplings. We
use parallel dynamics for updating of the neurons:

S,(t+1) = P(h, (t)), i =1, . . . , N.

The sigmoidal transfer function p(h) is assumed to be
odd [i.e. , P(—h) = —P(h)] and approaches +1 in the
limit h -+ +oo. Furthermore, P(h) should increase in

the neighborhood of h = 0 as

[Z(L)]J =
2

exp &
——) h, (t) —) ih, (t)h, (t) + ) J,, ) ih, (t)S~(t) + ) l, (t)S, (t)

iit l, t iWj t sit

(4)

(hth. ) = o'b,.+ (S,S.)
=o 6g + (P(ht i)P(h i)). (6)

Studying (5) and (6) leads now to the same averaged dy-

(5)S(t+1) = Sg~i = P(ht).

The internal Beld ht is now a self-consistent time-

We remark that the normalization is [Z(0)]~ = 1. Af-
ter some calculation following [8] the dynamics of the dependent Gaussian field with zero mean obtained from
whole system can be reduced to an equation for an effec- the equations for the unique saddle point:
tive single neuron in the thermodynamical limit:
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Dx gP(QKt ix), (7)

with the abbreviation Dz = dx(2vr) '~ exp( —x~/2}.
Evaluating (7) leads to fixed points K* as illustrated in

Fig. 1. For small K& q one gets

namical properties as (1). Thus we can define the activity
of the network,

« = (hi) = ~'+ (0'(hi-i))
Si+i = 4(hi )

(h, h~) = o 6i, + (Si S~)

=~'~t + (&(hi-i)&(h. i))

(9)

with n, P = 1, 2. The maximal Lyapunov exponent is
now derived from

between the two replicas using the method of generat-
ing function. The equations for the replicated effective
neurons are

K, = +g K, +O(K, ). ((Si+ —Si+ ) )lim lim —logz ((Si —Sz) )
(10)

Indeed the infinitesimal formulation is equivalent to the
definition by a perturbation flow in the original N
particle picture [9]. Assuming equilibrium

The trivial fixed point K* = 0 exists only in the noiseless
case and is stable for g ( 1. For oz ) 0 or g ) 1
we find only one stable fixed point with nonzero activity
0 & K* ( 1+a~.

To find the chaotic region we build a replica of our sys- K = K* = ((h')') = ((h')')
tern with infinitesimal different initial conditions and the
same noise (i(t) = (z(t). Now we study the correlation and defining the correlation between the replicated neu-

rons

Ci ——(h,'h, ) = o. + (S,'S, ) = o + Dx Dy P(v Kx)$ ~ z+
( K

Eq. (10) can be reduced to

oc,
A = —log2

t

+oo1= —log2
2

Dz [P'(V Kx)] . (13)

A = log2g. (14)

For the noiseless case and g ( 1, where the system is in
the trivial fixed point K' = 0, we thus find

! We should note here that this result for the stability of
the trivial fixed point can be obtained easily by using
the elliptic law for the spectrum of eigenvalues of a ran-
dom matrix [10] without using the method of generating
function.

This system shows chaos for g ) 1 in the noiseless case
with the asymptotic behavior A =

2 logs in the g —+ oo
limit for every finite noise and every transfer function
with the above described characteristic.

For further discussion we choose for concreteness
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04-
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—1 for h ( —1/g,
P(h) = ( gh for —1/g & h (+1/g, (15)

+1 for +1/g ( h.
To calculate the Lyapunov exponent for a certain noise
and gain parameter we have to find the fixed point K*
by evaluating (7) and inserting in (13). In general this
has to be done numerically as shown in Fig. 2. In the
limit g —+ oo we get

K* =1+o,
0.2-

g2
' I r

0 k
0 5

42K g

FIG. 1. Graphical solution for the equilibrium activity de-
termined by the fixed point equation (7). The convex curve
represents the right-hand side of the equation and the dashed
lines the left-hand side for g = 1, 2. Noise shifts the curve to
higher values as indicated by the finite value at K = 0.

1 2
A = —log2 g.

2 vrK*

Hence the asymptotic behavior is A =
2 log2g, as ex-

pected.
The behavior of the system under the inHuence of

noise is changed drastically. Generally the activity K*
of the network is increased. For g g„ the activity rises
strongly in a nonlinear fashion with the onset of noise.
This may be seen in Fig. 1. With increasing noise the
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FIG. 2. The largest Lyapunov exponent. as a function of
the gain parameter for cr = 0 (solid line), o = 1 (dotted
line), and o' = 2 (dashed line). The sharp bend at g = 1 in
the noiseless case indicates the phase transition to nonzero
activity.

FIG. 3. Phase diagram for an infinite-range neural net-
work with asymmetric couplings and external white noise.
For a given gain parameter g chaos is suppressed by sufficient
large amplitude of the noise a.

critical gain parameter g„where chaos sets in, is shifted
to larger values as shown in Fig. 3. For small noise we
find the asymptotic behavior g, = 1 —o~lno2 and for
large noise g, = gz./2 o.

This depression of chaos is difFerent from what is ob-
served in low dimensional systems where chaos is favored
by external noise [11, 12]. In high dimensional systems
where chaos is due to interactions between nonchaotic el-
ements, noise impairs the information flow between these
elements and therefore tends to suppress chaos; i.e. , de-
struction of chaos by external noise seems to be a fairly
general property of such systems.

We have solved the dynamical MFE for a fully con-
nected network of McCulloch-Pitts neurons with random
interactions and computed its phase diagram in the pres-
ence of external noise (see Figs. 2 and 3). Our results
show that the MFE simplify considerably for discrete par-
allel dynamics as compared to the continuous time model.

Therefore we expect that our method could also be
applied to other spatially extended nonlinear systems.
Some examples would be neural networks or oscillator
systems with asymmetric couplings or time-delayed in-
teractions. In a forthcoming paper we will investigate
the dependence of the largest Lyapunov exponent of a
neural network on the symmetry and time delay of the
interactions using Monte Carlo simulations for the MFE
following [6]. In addition, perturbation in the symmetry
parameter similar to [13] should be possible.
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