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For an itinerant system of electrons we develop a first-principles theory of spin Auctuations. It is

based on the idea of a generalized Onsager cavity field which varies slowly compared to the motion of in-

dividual electrons. It gives an account of both the good local moment and the weak itinerant ferromag-

net limits within the same framework. We illustrate its consequences by explicit calculations for Fe and

Ni.

PACS numbers: 75.10.Lp, 64.60.Cn, 71.10.+x, 75.40.Cx

One of the oldest problems in magnetism is its nature
in transition metals. While the modern version of the
Stoner model [I], namely, spin-polarized band theory
based on the local-spin-density approximation [2], gives a
reasonable description of the magnetic ground state in

most metals, above the Curie temperature Tg it fails to
account for the local moments observed in many neu-
tron-scattering experiments [3]. This obvious shortcom-

ing of the theory was remedied, in principle, some ten

years ago, by the introduction of local-moment-like
thermal spin fluctuations into the itinerant model of elec-
trons [4]. Unfortunately the ab initio implementation of
this disordered local moment (DLM) picture [5] works
well for Fe but not for Ni. In this Letter we go beyond
the mean-field (MF) approximation used in working out
the consequences of the disordered local moment picture
by replacing the Weiss field in the calculation with a gen-
eralized Onsager cavity field [6]. As we shall show

presently the new theory greatly improves the description
of both Fe and Ni and is couched in fully electronic
terms. In other words, it gives a fair account of the spin
fluctuations in both the good-moment and the weak
itinerant ferromagnetic [7] limits.

In the interest of clarity we begin with a brief outline
of Onsager's arguments as they are appropriate for the
classical Heisenberg model, H= —g;tJJet ei, where e;
is a classical unit vector. Following the discussion of
Brout and Thomas [6], we calculate the magnetization
m; =(e;& at each site i due to a small magnetic field h~ at
each site j in the paramagnetic state. In the mean-field
approximation, to linear order in hj,

where p = I /ktt T. Found wanting, Onsager sought to im-

prove on the MF approximation by observing that the
Weiss field h; on the right-hand side of Eq. (I) should
not include the eA'ects of the magnetization on the site i.
Clearly this implies that we should replace Eq. (I) by

where the term in square brackets is now called the cavity
field h;. To complete the theor~ one must now calculate
the induced magnetization i'tmj' in terms of the set [mtj.
A way to proceed is to note that for a small cavity field,
b'm~' gj;h,", where g~; is the yet unknown full suscepti-
bility tensor g~; =bmi/bh;. Moreover, m; g;;h," and
hence the cavity field h," may be written as h;=g;; 'm;.
Consequently, 8m~' =gj;g;, 'm;. Substituting this result
into Eq. (2) and taking the derivative of both sides with

respect to h~ yields a closed equation for the susceptibility
tensor g;i whose matrix elements are g,"Jt', where a,P
=x,y, z. In terms of the lattice Fourier transforms J(q)
and g(q) of J~i and gtj, respectively, this reads

g(q) =(P/3) [[J(q)1 —Xl g(q)+ I j, (3)

(4)

For the Hamiltonian at hand the above result is some-
times referred to as the mean spherical approximation
and is well known to represent an improvement on the
MF approximation. In what follows we present an analo-
gous generalization of the first-principles mean-field
DLM theory of Oguchi, Terakura, and Hamada, Pindor
et al. [5], Gyorffy et al. [8], and Staunton et al. [9].

We start with the assumption that, on a time scale r
long compared with the relevant inverse bandwidth, the
spins of the individual electrons are sufficiently correlated
to leave the magnetization averaged over a time r, and
the unit cell, nonzero. The orientations of these 1ocal
magnetizations [e;j vary slowly in time while their mag-
nitude fluctuates rapidly on the time scale of r. Their
average over r is defined as the local moment and it
changes with the orientational configuration, i.e., pI,=pk [e;}. The standard spin-density-functional theory
for studying electrons in spin-polarized metals can be
adapted to describe the states of the system for each
orientational configuration [e;}. In principle such a
description yields local moments pt, [e;j and the electronic
grand potential O[e;j for the constrained system. Thus
the long-time averages can be replaced by ensemble aver-
ages with the Gibbsian measure P[e;j =Z 'exp( —p
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x n[e;}), where the partition function Z =+;fde;
xexp( —POte;j) and the thermodynamic free energy,
which accounts for the entropy associated with the orien-
tational fluctuations as well as creation of electron-hole
pairs, is given by F = —kBTlnZ.

In the previous implementations of the DLM picture
[5,8,9] the above scheme was rendered tractable by
evaluating Z in the MF approximation and using the
self-consistent-field Korringa-Kohn-Rostoker coherent-
potential-approximation (SCF-KKR-CPA) method [10]
to approximate the Weiss field. Explicit calculations for
bcc Fe yielded (p;[e~j); =p;(e;) =p =I 91pa, . where the

partial average (p;[e~}); means the average over all

configurations with the specific orientation e; at the site i.
While this result is in good quantitative agreement with

experiment, for Ni p was found to be zero and the theory
reduced to the conventional Stoner model with all its
shortcomings.

We shall now improve the above theory by treating the
local magnetization as a response to the Onsager cavity
field rather than the Weiss field of the MF approxima-

tion. Once again a small magnetic field th;j is applied to
the paramagnetic system. This induces a small deviation
8P;(e; ) from the equilibrium single-site distribution func-
tion P; (e;) = I/4z. As a consequence the local magneti-
zation M; =fde; p;(e;)e;P(e;) may be written as a sum

of two parts, M; =p;+pm;,

p; = „de;6p;(e;)e;,4z"

m; =„de;e;8P;(e;),

and correspondingly the susceptibility takes the form

g;~ =g,".j+g;~'. Evidently the first term p; describes how

the magnitude of the local moments responds to the
external field, whereas the second term m; =(e;) describes
how they tend to align with the field.

If we apply the procedure in the introduction and cal-
culate the response of the CPA medium to the Onsa~er
cavity field and subtract those changes, [baal' j, {pbml' },

t

that are derived from the induced magnetization at the
site i, we find for a paramagnetic system,

pm; =~ g [pS;~ (mI —8m~")+pS~ "(pI —6@~")+pZ;Ihl]+p'h;
,l~i

where, as in Ref. [9],
'a p b2~ CPA/p g Smmg S

'asap

p2~ CPA/p p Smng

(7)

and

aP g 2 g CPA/pm

and 0 " is the grand potential for an inhomogeneous CPA medium averaged over all configurations. The SCF-KKR-
CPA method also provides an expression for p;(e;), the magnitude of the partially averaged moment on the site i orient-
ed along e;,

p;(e;) = —Ima '
' deaf(s v) de;tra" —e; dr;(G(r;, r;;s));,

where f is the Fermi function, v is the electronic chemical
potential, a",o', cr' are the Pauli spin matrices, and (G);
is the partially averaged Green function. Using this ex-
pression as a starting point it is easy to derive the follow-

ing Onsager corrected equation:

Clearly Eqs. (7) and (8) are the analog of Eq. (2) in

the present case where both the orientation and the size
of the moments fluctuate. Moreover the direct correla-
tion functions S,S ", y""', and y"" as well as g and X,

are available from the SCF-KKR-CPA calculations per-
formed in the paramagnetic state. Thus we may proceed
with the theory as in the case of the simple Heisenberg
model. To do so we suppose that p Bmi ' =gI; h;

(8) before is the magnitude of the total magnetization on the
site i and the tensors such as gl; =pl;1 are now expressed
in terms of scalar quantities in the paramagnetic state.
Using these assumptions and Eqs. (7) and (8) we arrive
at the following analogs of Eq. (3):

g '(q) = (P/3) [S (q)g '(q)+ pS "(q)gn(q) —A~ [g (q)+g" (q)]+ [p +p P(q)]j

p; =—„de;bp; (e;; [m~ —
bml

' },[I21
—Bp I

' })e;

=g yI (mI —Bm")+gy""(p —b'p")+gg h

x b,p, and g;~ is the Pauli susceptibility.

(9)

g"(q) =y""'(q)g '(q)+ y""(q)g"(q) —A [g (q)+g" (q)]+@'(q), (10)

with A~ =g;, fdq[Smm(q)gm(q) +pS"'"(q)g"(q)] and A2 =g, ,
' fdq[y" n'(q)Zm(q) + y""(q)g"(q) l. On integrating
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Eqs. (9) and (10) over q we find g;;=Pp /3+@,.; from

which a high-temperature estimate of the magnetic cor-
relations can be extracted and worked out to be
(M; ) =p +3@,.;/P.

For the rigid local-moment system in which itinerancy
effects are small S ", y™,y"", and g vanish, and we ob-
tain the classical Heisenberg results with "spins" of
length p. As shown by Ref. [6], the approach is

equivalent to the spherical model. On the other hand, in

a system where no "local moment" is set up on the aver-

age in the paramagnetic phase, p =0 and S™",5 ", and
y" also vanish and g (q) =0, g(q) Z"(q) -g (q)/[1
—y""(q)+A2] with A2=(g, ;) fdq y""(q)g"(q). Note
that y"" is a product of a Stoner exchange-correlation
term and a Pauli susceptibility g . The theory now has
the form of the static, high-temperature limit of the
theory of Moriya and co-workers, Lonzarich and Tail-
lefer, and others [7] to describe weak itinerant ferromag-
nets. The interactions between spin fluctuations are dealt
with self-consistently through Ap.

It is evident that the dynamical effects of the spin fluc-

tuations have been omitted thus far. As emphasized by
Moriya and co-workers and others [7], their treatment is

necessary for a full description of the neutron-scattering
data and the properties of a range of weak itinerant fer-
romagnets. We point out, however, that the theory de-
scribed here, with its single assumption of a time-scale
separation between the fast orbital motions and slower

spin fluctuations, is set up consistently within the confines
of spin-density-functional theory. It is uniquely parame-
ter free, and being based on the generalization of the On-

sager cavity field, it represents a well-defined stage of ap-
proximation. Once its scope of validity is established it
will provide an appropriate basis for future ab initio de-
velopments.

Figure 1(a) shows a comparison between theory and

experiment [11] of the static uniform susceptibility for
bcc iron [the experimental values are for Fe(5.7%Si)].
The Curie temperatures T~ of 1015 and 1040 K are in

very good agreement (the "mean-field" estimate was

1280 K [8,9]). For temperatures in excess of Tr +300 K,
both fit Curie-Weiss (C-W) laws g=C/(T —8), each
with 8= 1100 K. The eff'ective moments, p, n (C

p,n/3), of 1.96ptt and 3.13ptt, respectively, are not in

such good agreement, although the theoretical value is

slightly enhanced over the "local" moment value of
1.91pp. On analyzing the q dependence of the suscepti-
bility we find that at 1.25', for ~q~ ~1 A ', g(q)
varies as g(0)/(1+q /a. ) with the inverse correlation
length «=0.37 A . (This is similar to analogous re-
sults for a nearest-neighbor Heisenberg model with the
same Tr.) This value compares favorably with x =0.4

quoted by Shirane, Boni, and Wicksted [12] who in-

terpreted their inelastic neutron-scattering experiments in

terms of simple paramagnetic scattering. In summary,
we find that a Heisenberg model provides a qualitative
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FIG. I. (a) The temperature dependence of the inverse

paramagnetic susceptibility of bcc iron in atomic units. The
crosses show the theoretical results; circles show the experimen-
tal data [1 I]. (b} The temperature dependence of the inverse

paramagnetic susceptibility of fcc nickel in atomic units. The
crosses show the theoretical results; circles show the experimen-
tal data [l Il.

description of bcc iron.
Recall that the earlier mean-field theory [5,8,9] could

not give a satisfactory treatment for nickel. The new

theory outlined here, however, is able to provide a reason-
able account of experimental data. We find no "local"
moment, p =0, and g(q) is determined solely by
g"(q) =g (q)/[1 —y""(q)+A2], A2=(g,';) ' fdq y""(q)
xg"(q). Figure 1 (b) shows the theoretical-experimental
[1 1] comparison. Both show approximate C-W behavior.
Although at 450 K and some 200 K lower than the exper-
imental value, T~ is substantially reduced from the Ston-
er value of 3000 K. Effective moments of 1.21pg from
theory and 1.6pp from experiment are also in fair agree-
ment. Evidently there is little connection with the low-

temperature saturated magnetization per atom of 0.6pg
as accorded by a Rhodes-Wohlfarth plot [13]. For
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~q~ ~ I A ' the wave-vector-dependent susceptibility
g(q) =g(0)/(I+q /s ), where tc has roughly the same
temperature dependence as g(0) ', a feature which has
also been noted from experiment [12]. At T=l 25T. ct
tc=0.28 A ' which agrees well with the inverse spin
correlation length of = 0.22 A ' extracted from the sim-

ple paramagnetic scattering analysis of Shirane, Boni,
and Wicksted [12] of their inelastic neutron-scattering
data.

In summary, we have presented a first-principles
framework for Onsager cavity fields in itinerant-electron
systems and at this point add that the approach is

suSciently general to deal with a variety of slowly vary-
ing fluctuations such as those appropriate to composition
and strain in metal alloys. The first application on spin
fluctuations in the paramagnetic states of iron and nickel
finds that iron is related superficially to a Heisenberg
model but nickel can be analyzed in terms of traditional
Stoner theory although spin fluctuations have drastically
renormalized the exchange interaction and lowered Tq.
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