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The Shape Eigenstate: A New Kind of Resonance
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A new type of resonance appears to have been discovered in the ' C('2C, ' C(02+)) ' C(0&+) reaction

at E,.~. 33 MeV. We suggest that it is formed coherently from nearly degenerate resonances with

different I values. Taking the individual resonances to be members of a cluster rotational band with

2n+ 1 const, the coherence can be shown to follow from Levinson's theorem. The new kind of reso-

nance does not have a definite angular momentum but corresponds to an approximate shape eigenstate.

PACS numbers: 25.70.Ef, 21.60.Gx, 24.30.Gd, 27.30.+t

In some of the first studies of the collisions of two com-

plex nuclei one of the unexpected features was the ex-

istence of narrow resonance in the yield of y rays and

light ions [1]. These experiments studied the collision of
two '2C nuclei but in later experiments resonances were

found to occur in many heavy-ion collisions, and similar

results have been found in the scattering of identical nu-

clei as heavy as 2sSi. Resonance phenomena have also

been found in the collisions of nonidentical nuclei [2].
One of the best studied systems is ' C+ ' C, and reso-

nances have been discovered at center of mass energies up

to and in excess of 30 MeV [3].
Most resonances studied [2] appear to be eigenstates

characterized by a single angular momentum value, and

this implies that the compound system cannot have a

definite direction in space. Although two such resonances

may overlap, this is quite a rare situation which has been

successfully understood in the past in terms of band

crossings [4] or the double resonance mechanism [5].
However, in heavy-ion scattering it might be possible to
observe the effects of another quite novel kind of reso-

nance in which many resonances with different angular

momenta are excited simultaneously.
Data have recently been published for the ' C(' C,

'2C(02+ ) ) 'zC(02+ ) reaction [6] which strongly suggest

the excitation of a 6a-particle-chain state in Mg as pre-

dicted by a-cluster-model calculations [7]. This identifi-

cation is made by supposing that the observation of two
' C(02+) 3a-chain states [8,9] in the exit channel arose

from the fission of a Mg 6a-chain state. One of the

most striking features of these data is the behavior of the
cross section around 90' in the center-of-mass frame (see

Fig. 1). The cross section on resonance is very strongly

enhanced near 90'. In this Letter we present an explana-

tion of this unexpected behavior, in terms of overlapping
resonances.

Physically, if we think of a deformed compound nu-

cleus being created in such circumstances, the existence
of overlapping resonances could produce a density distri-
bution for the compound system with a definite orienta-
tion in the laboratory. For definiteness we will assume
that this recently discovered resonance does indeed corre-

spond to the 6a configuration. However, our arguments
do not depend on the detailed structure of the compound
system, only that there are many overlapping resonances.
We concentrate here on the angular dependence of the
state in space and the angular distribution of the decay
fragments. We also show that some information can be
derived on the spatial extension. The simple wave func-
tion that we arrive at can be regarded as a partial realiza-
tion of an eigenstate of the angular position operator,
cos8.

The 6a-chain state resonances with different angular
momenta have been predicted to be very closely spaced
[7]. When the widths are large compared to the spacing
the resonances can be considered degenerate. Such a set
of resonances can be described by a cluster model in

which the Wildermuth condition 2n+I=G (=const) is

satisfied [10,11] and we predict that the angular distribu-
tion for this reaction should show a strong enhancement
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FIG. 1. Measured angular distributions for the ' C(' C,
'2C(Op+)) ' C(02+) reaction [ll at 33 MeV (on resonance) and
35 MeV (off resonance). The 33-MeV data are fitted using Eq.
(9) with l~» 18 and 82=0.15905 ttb/sr (and B2=0.18644
ttbjsr and L 16 for the incoherent background term). The
35-MeV data are presented with a squared Legendre polynomi-
al of order 16 to guide the eye. The contrast between the two
data sets emphasizes the unusual nature of the 90' peak on res-
onance.
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at 90', on resonance, in good agreement with the data.
The result follows from consideration of the phase dif-
ferences between resonances in a cluster rotational band
and is a consequence of Levinson's theorem [12]. Indeed
the phases are such that the data can be interpreted in

terms of alignment of the 6a-chain state perpendicular to
the beam axis. Hence we might consider these data as
evidence of a new type of resonance —a resonance which

is not an eigenstate of angular momentum, but rather an

approximate "shape" eigenstate, built from a superposi-
tion of many partial waves.

It is no surprise that the angular distribution for the
scattering of two spin-0 bosons should peak at 90'. How-

ever, it is rather more mysterious that the 90' maximum

should be some 4-5 times greater than the neighboring
local maxima. This can certainly not be achieved with

the square of a single Legendre polynomial, which im-

mediately suggests the necessity for interference of
several Legendre polynomials. If we write (with even I

only)
Imax

eAects, the above matrix element takes the approximate
form A(-exp(i')exp(i8, ') ~A(~, where 8,' and Bi. are the
elastic scattering phase shifts in the entrance and exit
channels. In this form the DWBA matrix element looks

very similar to that used in the eikonal approximation
[13] where ~A(~ would be related to a plane wave matrix
element. The same form is obtained in semiclassical ap-
proximations when the 5 matrix for a transition from
channel i to channel f is taken to be proportional to the
geometric mean of the S matrices for elastic scattering in

those two channels [14].
The solutions of the radial wave equation for. the

scattering in the exit channel must be regular at the ori-

gin where we define them to be real with the form

lim, op((r) —+r'+'. This follows if the scattering po-
tential is taken to be real. However, this takes no account
of the necessity to satisfy the asymptotic boundary condi-
tions. Following the sequence of steps in Ref. [15] the

physical wave function y((r) which satisfies the asymp-
totic boundary conditions can be shown to be related to p(

by

f(8) = g (21+ 1)a(P((cos8)
Imin

and note that

k ""'y((k, r )

iF+ (k) i(2l+1)!!
(4)

IT
( —1) '( '

for I even
2'[(1/2)!] '

0 for I odd

we see that a( must be proportional to ( —I )'( for con-
structive interference to be produced at 90'.

We now outline the steps necessary to determine the
phase when the individual resonances excited in the exit
channel all belong to a cluster-model rotational band
characterized by a constant value of 2n+l (recall that n

is the number of internal nodes in the radial wave func-
tion). We aim to highlight the essential features rather
than perform a fully rigorous calculation for comparison
with the experimental data. To do this we make several
assumptions: First, we assume that there are no reso-
nances in the entrance channel, so that the entrance
channel phase shift is not varying rapidly; second, we as-
sume that the coupling between the entrance and exit
channels is weak, so that the distorted wave Born analysis
(DWBA) approximation is valid (in particular, we re-

quire that the resonances in the exit channel do not

significantly infiuence the entrance channel). For the
moment, we ignore all Coulomb and absorption eftects in

the entrance and exit channels. Each partial DWBA am-
plitude for a monopole transition (with all spins zero) can
be written (apart from numerical constants) as

P((cos((r/2) ) = '
(2)

A( = yy(r) V(r) y/(r)r dr, (3)

where i'; (r) and yI(r) are elastically scattered waves in

the incident and final channels, having angular momen-
tum I, and V(r) is the nuclear transition potential, as-
sumed real. We shall show that neglecting absorption
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where the dependence of (i(( and p( on k is indicated
explicitly, and the Jost function has been introduced
in modulus/argument form as F~ (k) =+ ~!F+(k)

~

xexp[ —iB((k)]. The phase of y V(r)(i((I then follows
from Eq. (4),

i' (k, r) V(r)yy(k, r) = k +' P;(k, r) V(r)pI(k, r)
[(2&+ I )!!] 'IF,'+ (k ) ) ) FI+ (k ) (

x exp(ib +ibI) . (s)

Here the term in square brackets is real, and on substitu-
tion in Eq. (3) we obtain the desired result. We now

proceed to use this result together with our first basic as-

sumption that 6 is slowly varying with I so that the I

dependence in the phase of the matrix elements is dom-
inated by exp(i'). Although the entrance channel phase
should certainly vary with I, we assume this to be negligi-
ble compared with the contribution from the exit channel.

Next we invoke Levinson's theorem [12] which states
that the phase shift is continuous and uniquely defined for
each I value and that

&((E =0) —8((E ~)

(r(1V(+ —,
' ) if I =0 and F'~(0) =0,

tI(rN( otherwise,

where AI is the number of bound states with angular
momentum i. The special case of i =0 and F+(0) =0
refers to s-wave resonances at zero energy and is physi-
cally very rare. The final step in obtaining a definite
phase relation between diff'erent partial waves is to com-
bine these very general considerations with a cluster-
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model interpretation of the excited states in Mg. We
have previously argued [16] that a Mg 6a-chain state,
considered as two 3a-chain states end to end, should have
2n+I =G =36 (where n is the number of nodes, inside

the potential, of the radial wave function describing the
relative motion, and I is the angular momentum). The
precise value of 2n+I is not important so long as it
remains constant within the band and is large enough to
allow breakup into two ' C(02+) states with I + 18. The
association of the 02+ state of ' C with a 3a-chain state is

a long-standing identification [8,9].
Consider now nonzero values of /. We denote by Nf'

—
1 the number of internal nodes in the wave function of

the Nt'th and last bound state, of angular momentum I.
As we increase the energy above threshold we introduce
an extra phase shift of n and one extra node inside the
potential as we cross each successive I resonance. The
first resonance occurs at a phase shift Nl"tr+tt/2 There.-

fore we can generally say that the phase shift for partial
wave I at the center of a resonance of energy E is
(Nf'+Ni'+ —,

' )n, where Nt' is the number of bound states
and NI' the number of resonant states of angular momen-

tum I lying below Ei. Now for a cluster band character-
ized by a fixed value of 2n+I =G, we can relate the num-

ber of nodes to the angular momentum (remember that
Nt'+Ni"=n —1) and write (for nonzero I) bi(E) =

2 (G
—I —I)n. This immediately yields the required result,

bi(E) =const —ln/2.
We now employ this crucial phase relation to fit the

measured angular distributions. Here we seek to repro-
duce the 33-MeV data of Wuosmaa et al. [6] on reso-

nance with the simple form

e " (2l+1)aiPi(cos8)
Imin

+B !(2L + 1)PL (cos8) i

where we have added a background term to account for
any nonresonant contributions. This background term is

assumed to be 90' out of phase on resonance so that its
contribution can in effect be added incoherently to that of
the resonant term. The amplitudes ai are now real and

positive, and e "i/ includes the complex phase to within

a constant (including the entrance channel phase). We
present details of the energy variation of the cross section
on passing through resonance elsewhere [171. In Ref.
[17] we tacitly assume that all ai's have an identical
Breit-Wigner energy dependence. The best fit to the pub-
lished data [6] is obtained with Ep =32.8 MeV and width

I =4.7 MeV. The quality of the fits obtained in Ref. [17]
is comparable to that presented here.

We have fitted the data with various I-dependent forms
of the amplitudes aI. We find that we obtain the best fits
to the data (in a minimum g sense) if we take I;„=2

and assume that the amplitudes aI vary slowly with I, but
the low partial waves 1=0-4 are not essential to get an
adequate fit. In particular, if we choose

e
—ill/2 ( I ) i/2 Al t

2'[0/2)!]'
t/2

= ( —1)i/'~ 2 (8)
zl

and remembering that only even-I terms occur in the
sum, an excellent fit is obtained with I;„=0.This choice
for ai enables us to use Eq. 8.9.1 of Ref. [18] to obtain a
simple closed form expression for the diAerential cross
section,

for I & 0,

do'

dn
Pi,„+i (cos8)

cos8
(I,„+1)!

2 '*[(I /2) t] 2

+B i (2L+ 1)P (cos8) i (9)

and A has a Breit-Wigner energy dependence. Figure 1

shows the 33-MeV data fitted with the above form taking
/m»=18 and & =0.15905 pb/sr for the resonant term
and L =16 and B =0.18644 iub/sr for the background
term. With these values we obtain a g2 of 0.99 per de-
gree of freedom. The value of /, „required by the fit is

close to the experimental grazing angular momentum and
is basically determined by the width of the 90' peak.
This indicates that the chain state rotational band has
been excited up to approximately the grazing I and that
most of the partial waves contribute coherently to the res-
onant cross section. The background term has L =16
which is the dominant grazing angular momentum [6], as
would be expected for a nonresonant peripheral reaction
mechanism.

A simple physical interpretation of the 90' peak can be
given in terms of the quantal deflection function. Here
we use 8=8(bj+bf)/tII, where bl and bj are the phase
shifts in the entrance and exit channels, respectively. We
assume that the phase shift in the entrance channel is in-

dependent of /, so that e builds up only in the exit chan-
nel. The value of e is found by differentiating the phase
relation obtained from the Wildermuth condition with
respect to I, so that Bbj/8/= —ir/2, with our assumption
about 8]. This implies that particles come in along the
beam direction and are predominantly scattered at 90'.

A more intuitive insight into the physical situation is
provided by supposing that a very deformed axially sym-
metric E =0 nucleus, oriented in space at the polar angle
8p is formed in the reaction. This undergoes symmetric
fission with the fragments emitted at the polar angle 8.
There is no information on the azimuthal angles, so we
know only that the symmetry axis of the nucleus is distri-
buted on a cone of angle Oo, and that the fission frag-
ments are to be found on a similar cone of angle 0. Con-
sider a limiting case in which any change of the polar an-

gle of the deformed nucleus produces a state orthogo-
nal to the initial state. Mathematically this states that
(g(cos8) ~g(cos8p)) = (I/2x) b(cos8 —cos8p). The azimu-
thal angle is completely undetermined above. Let us now

expand the b function b(cos8 —cos8p) in terms of the
complete orthogonal set of Legendre polynomials,
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6(cos8 —cos8p) =g atP((cos8) .
I

(10)

Using the orthogonality of the Legendre functions we

may determine the expansion coefficients as al
=

2 (21+ I )Pt(cos8p). We thus obtain

6(cos8 cos8p) =
2 g (2l+ 1)P((cos8p)Pt(cos8) . (11)

I 0

If we now choose 80=90', we obtain the result that the
odd partial waves vanish, since Pt~g(90') =0, and when

l is even we get a phase e"1 =(—1)'1 multiplying
Pt(cos8) [see Eq. (2)]. This expansion of the 8 function
is identical in form to Eqs. (7) and (8) except that the
sum runs over even values from l =0 to l ~ instead of
cutting ofl' at l~,„. Thus Eqs. (7) and (8) actually de-
scribe a truncated b function and we see that the de-
formed nucleus must be aligned perpendicular, or very
nearly perpendicular, to the beam axis. The function
b(cos8 —cos8p) can be regarded as an eigenstate of the
operator cos0 with eigenvalue cos00. Taking the experi-
mental assertion that the observed resonance corresponds
to a 6a-chain state, together with the result that the state
has polar angle of 90' and uniformly distributed azimuth,
we obtain the picture of a flat disk perpendicular to the
beam (since there must be azimuthal symmetry). From
the value deduced for l~,„, and thus R~,. „(see below), we

have some idea of the radius of this disk. Thus the reac-
tion effectively produces an aligned deformation on
resonance —a shape eigenstate.

It should be noted that the ideas developed above do
not hold for elastic scattering or for strongly coupled in-

elastic scattering. For elastic scattering 6;=Sf and so

exp(i8;)exp(iaaf) is then always —I on resonance. Final-

ly we can make a crude estimate of the length of the
chain using the expression kfR =[l,„(l,„+I ) ] '

where kf is the wave number in the final channel and we

set 1,„=18. This yields 2R =18 fm for the length of
the chain. This large value for R indicates that the reac-
tion may already begin to take place while the nuclei are
still well separated, so that the low partial waves are not

completely absorbed and their inclusion in the sum of Eq.
(7) is quite appropriate. This chain length is somewhat
smaller than the cluster model calculations predict (i.e.,

approximately 24 fm [7)); nevertheless, it does indicate
that a very deformed system has been produced.

In summary, the new type of resonant behavior we
have described in this Letter should be a very general
phenomenon. The necessary conditions for its observa-
tion are that there be either an inelastic scattering involv-

ing two weakly coupled channels or a rearrangement col-
lision involving distinct entrance and exit channels, only
one of which is resonant. This resonant channel should
contain several quasibound states (with different angular
momentum values, but belonging to a band characterized
by a fixed value of 2n+l) which are efl'ectively degen-

crate. On resonance, successive even partial wave ampli-
tudes will then have a phase e ' ~ leading to an angular
distribution with a strong local maximum at 90' several
times larger than any nearby local maximum. The quan-
tal deflection function will reduce to ~e~ = tt/2. Finally,
although a system of identical bosons will accentuate this
eAect since odd partial waves are absent from the scat ter-
ing, it is not an essential prerequisite for observing the
efI'ect.

We would like to thank Dr. R. R. Betts and Dr. A. H.
Wuosmaa for invaluable discussions and communications
concerning their experimental data. We also thank them
for permitting us access to those data. In addition,
A.C.M. thanks the U. K. Science and Engineering Re-
search Council (SERC) for financial support.

[1] D. A. Bromley, J. A. Kuehner, and E. Almqvist, Phys.
Rev. Lett. 4, 365 (1960).

[2] K. A. Erb and D. A. Bromley, in Treatise on Heavy 1on-
Scienceedite, d by D. A. Bromley (Plenum, New York,
1985), Vol. 3, p. 201.

[3] T. M. Cormier, J. Applegate, G. M. Berkowitz, P.
Braun-Munzinger, P. M. Cormier, J. W. Harris, C. M.
Jachinski, L. L. Lee Jr. , J. Barette, and H. E. Wegner,
Phys. Rev. Lett. 38, 940 (1977).

[4] See for example, N. Anantaraman, J. P. Draayer, H. E.
Gove, and J. P. Trentelman, Phys. Rev. Lett. 33, 846
(1974).

[5] W. Schied, W. Greiner, and R. Lemmer, Phys. Rev. Lett.
25, 176 (1970).

[6] A. H. Wuosmaa, R. R. Betts, B. B. Back, M. Freer, B. G.
Glagola, Th. Happ, D. J. Henderson, P. Wilt, and I. G.
Bearden, Phys. Rev. Lett. 68, 1295 (1992).

[7] S. Marsh and W. D. M. Rae, Phys. Lett. B 180, 185
(1986).

[8] D. M. Brink, H. Friedrich, A. Weiguny, and C. W.
Wpng, Phys. Lett. 33B, 143 (1970).

[9] N. Takigawa and A. Arima, Nucl. Phys. A168, 593
(1971).

[10] K. Wildermuth and Y. C. Tang, in A Untfted Theory of
the lVucleus (Academic, New York, 1977), pp. 18,87.

[11]B. Buck, H. Friedrich, and C. J. Wheatley, Nucl. Phys.
A275, 246 (1977).

[12] N. Levinson, Mat. Fys. Medd. K. Dan. Vidensk. Selsk.
25, No. 9 (1949). See also L. I. Schiff, Quantum
Mechanics (McGraw-Hill, New York, 1968), 3rd ed. , p.
353.

[13] B. J. B. Crowley and B. Buck, J. Phys. G 4, 9 (1978).
[14] B. J. B. Crowley, J. Phys. A 11, 509 (1978).
[15] L. I. Schiff', Quantum Mechanics (Ref. [12]), p. 345 et

seq.
[16] A. C. Merchant and W. D. M. Rae, Nucl. Phys. A (to be

published).
[17] A. C. Merchant and W. D. M. Rae (to be published).
[18] Handbook of Mathematical Functions, edited by M.

Abramowitz and I. A. Stegun (Dover, New York, 1965),
p. 335.

3712


