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Absolute Alpha Decay Width of 2'2Po in a Combined Shell and Cluster Model
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We give a parameter-free microscopic description of the o decay of the ground state of 212p6 by
expanding the parent wave function over a basis containing shell-model- as well as cluster-model-
type elements. The resulting decay width agrees with experiment well within the range of the
uncertainty inherent in the input of the model. The amount of core+« clustering in the parent state
is found much higher (30%) than former microscopic estimates (~1%), which shows the soundness
of assuming the existence of preformed « particles with appreciable probability in the initial state.

PACS numbers: 23.60.+e, 21.10.Jx, 21.60.Gx, 27.80.+w

The a decay of heavy nuclei slips out of the grip of
theoreticians again and again. While the barrier pene-
tration problem involved has been solved once and for
all, and even the relative probability of a-particle pre-
formation seems by now well accounted for [1], a reliable
theory for the absolute probability of o formation is yet
to be seen [2]. And until we can predict the absolute
decay constants, we cannot feel we really understand «
decay.

The numerous attempts so far have either brought par-
tial success [3-8] or the approximations used need further
justification [9-11]. The revival of interest in decay frag-
mentation has recently been stimulated by the discovery
of heavy-cluster decay, which was predicted by fission
theory [12] and poses an even tougher challenge to con-
ventional decay theory than o decay [13].

As a-particle formation involves valence nucleons, its
theoretical formulation calls for the shell model. The
shell model, however, tends to underestimate the de-
cay width substantially [3]. The problem is that con-
ventional formalisms require that the parent wave func-
tion be correct at a channel radius that is large enough
for interfragment nucleon-nucleon interaction as well as
Pauli exchanges to be negligible, and that is very dif-
ficult to achieve. A partial remedy was attained by
Fliessbach and Mang [4], whose formalism allows us to
use radii within the range of Pauli exchanges, and by
Tonozuka and Arima [5], who, in addition, included
high-lying admixtures brought about by proton-proton
and neutron-neutron interaction. Later it was shown by
Dodig-Crnkovié et al. [8] that the proton-neutron inter-
action also plays a significant role. The use of the micro-
scopic cluster model to produce four-nucleon correlation
on the nuclear surface was introduced by Wildermuth
and co-workers [7, 14], and the concept of an “a giant
resonance” to achieve the same phenomenology was pro-
posed by Okabe [11].

In this Letter we report on a parameter-free solution

of the problem of a formation and absolute decay width
in the ground state (g.s.) of 212Po. We thereby get a
reliable estimate for the amount of « clustering in 2*2Po.
The nucleus of ?'2Po is the simplest case of physical in-
terest. Our approach is essentially a shell model com-
plemented by cluster-model-type basis states. It can be
derived along the following lines.

The exponential decay is described by a Gamow wave
function, in which, for large core-a distances, the relative-
motion function is an outgoing Coulomb wave. Under the
Coulomb barrier the outgoing wave has a long neck rem-
iniscent of the tail of a bound state, which qualifies the
state for a bound-state-type variational approximation
[14,15].

The state space is fully spanned by the shell-model
basis alone, but to represent the decaying state in this
way requires prohibitively large dimensions. We combine
the shell model with the cluster model,

U = \IlSh + \I/CI,

to cover a large enough region of the configuration space
in the o channel with manageable dimensions. The
cluster-model term should have the form

gl = A{®:(£c)Pa (&a)o(R)},

where ®, and @, are the fragment intrinsic wave func-
tions, R connects the centers of mass, and A is the inter-
fragment antisymmetrizer. It is good enough to describe
the a particle by a single configuration of 0s harmonic-
oscillator (h.o.) states ¢(®)(x) = (a/m)%*exp(—iaz?).
The intrinsic state @, is related to the 4x4 Slater deter-
minant ¥, ({x;}) by o = 1) (1 0| x;)®4. It is now
convenient to expand ¢(R) in terms of shifted Gaussians
projected to orbital momentum LM:

pR) =) fk/dék Y (8k)p™® (R — ).
%

In keeping with the standard shell model of heavy nuclei,
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the core can be taken to be infinitely heavy. This is a
very good approximation in the cluster model as well
[16]. Furthermore, it is useful to choose b = 4a. Then,
because 4 (R — 5)®, = ¥, ({x; — s}), we have

wel = Z fk/1§k Y (8k) Uk,
P

where

Uy = A{@cpr(x1) - - or(xa)x}
= A{®.r(x1) - - - Yr(x4)x}

or(x) = (@ (x — sy), x is the antisymmetrized product
of spin-isospin states, and ¢, = Py, with P projecting
onto the states unoccupied by the core nucleons.

In describing 212Po we assume the 2°8Pb core to be in-
ert, with the nucleons occupying h.o. orbits of parameter
. Since 1 are orthogonal to the core orbits, we can
get rid of the explicit treatment of the core as is usual in
the shell model. The problem is still tough technically,
due mainly to the reappearance of the core orbits in the
projector P. Our wave function is written as

R
=3 Cutl® + 3 fi fdsi Va(s0)n(xa) - vilxa)x,
n k

where the shell-model basis states @%ﬂ) are four-nucleon

h.o. states of parameter 83 carrying angular momentum L.
We treat the coefficients C,, and fi as linear variational
parameters. The Hamiltonian we diagonalize is

4 4
H= Y (T:+U)+ Y V(i)
=1

i<j

where T; is the nucleon kinetic energy, the average po-
tential U; is a realistic single-particle (s.p.) potential of
Woods-Saxon form, with a Coulomb term generated by a
homogeneous sphere, and V (i, j) is a residual interaction.

The essential novelties in our approach are as follows.
Contrary to Ref. [7], we avoid a bias for o formation by
using a large realistic shell-model basis. In contrast with
Ref. [11], we do not presuppose the existence of a model
o-cluster state near the decaying physical state. Unlike
in Ref. [7], all matrix elements are calculated with ex-
act analytical techniques, and we have no convergence
problems. At variance with Ref. [11], we fix all param-
eters to independent experimental data, and include the
interaction between protons and neutrons as well.

Last but not least, the treatment of the core-a inter-
action deserves some discussion. In the shell model this
interaction is hidden in the s.p. energies, which are in-
sensitive to the shape of the s.p. potential on the nuclear
surface. In the conventional cluster approach [7] this in-
teraction is involved in the potential kernel, and that is
bound to be in gross error because of the compelling use
of h.o. functions in ®.. This implies errors in the inner
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wall of the Coulomb barrier in both of these approaches.
In our model the s.p. states are still h.o. states, but the
core-a interaction, if disentangled from the formalism,
emerges as a folding of the s.p. potential U with the
density, which are both chosen to be realistic.

We used the s.p. potentials labeled “POP” and “NOP”
by Rost [17] for protons and neutrons, respectively, ap-
proximated them by a combination of Gaussians, and
adjusted the overall strengths to the experimental en-
ergies of the first proton and neutron s.p. states above
the Fermi levels. To facilitate the analytical calculations,
we approximated the s.p. Coulomb potential also by a
combination of Gaussians. The h.o. constants were set
to a=0.5, $=0.16 fm~2. The s.p. states included are
the following: Ohg/g, 1f7/2, Oilg/g, 1f5/2, 2[)3/2, 2p1/2
for protons and 1gg/2, 0i11/2, 0j15/2, 2ds/2, 3512, 1g7/2,
2d3, for neutrons. Bases for 2’°Pb and “!°Po were then
set up by forming all possible positive-parity combina-
tions of s.p. states up to summed angular momentum 8.
The shell-model basis for 2'2Po was obtained as a direct
product of the two-nucleon bases. For L=0 it has 538
elements. The cluster-model basis was chosen to have
40 elements, with {sx} values from 1 to 20 fm, with a
distribution peaking on the surface. For the model to be
physically sensible, the energies of not only 21°Pb, 210Po,
210Bi, and 2!2Po, but also of the o particle should be re-
produced, which excludes the usual interactions devised
for valence nucleons. The results we show were obtained
with the Volkov 1 force [18] with Majorana parameter
0.58, which is often used in the cluster model. We ne-
glected the Coulomb interaction between the valence pro-
tons.

The model energies of the yrast states of 210Pb, 219Po,
and 219Bi all agree with experiment within 0.2 MeV
(mostly much better), which is very good for this uncon-
ventional interaction. In the shell model the g.s. energy
of 212Po, with respect to the four-nucleon threshold, is
—18.61 MeV, and the inclusion of the cluster state low-
ers this to —18.88 MeV. The a-particle energy was found
to be —27.79 MeV, thus the a-decay energy obtained is
8.91 MeV, which is in reasonable agreement with experi-
ment (8.95 MeV). Through the cluster-model terms, the
212pg energy is very sensitive to the value of 3, and the
correct energy found verifies the consistency between 3
and U.

It is worth noting that the pure cluster model puts
the g.s. at —16.47 MeV, which is not much higher than
the shell-model energy. This state can be identified with
the model cluster state postulated by Okabe [11], but its
“excitation energy,” —16.47 + 18.88 MeV=2.41 MeV, is
substantially smaller than Okabe’s assumption, 5 MeV.

The o formation is characterized by the components
of the state vector ¥ in the standard cluster basis. The
elements of this nonorthogonal basis {¥,} are

T, = A{®.D,}, @, = r/df'YL*M(i')@aé(r ~R).
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The overlap (¥,.|¥,/), as a function of r and r’, gives the
integral kernel of the norm operator A, which comprises
the core-a Pauli effects. The a-formation amplitude or
covariant component in the cluster-model subspace [19]
is

g(r) = (Lr|T) = (2,[2*") + A(®,|27).
The amplitude of the amount of clustering 4, 19] is
G(r) = A~%g(r).

To calculate the decay width I', we adopt the R-matrix
formula

T = 2P (h%/2Maar)g? (aL),

where M, is the (reduced) mass, Pr, is the Coulomb pen-
etration factor, and ay, is the channel radius. This is valid
[20] for a narrow isolated level deep below the Coulomb
barrier, provided ar is in a region where the interfrag-
ment potential is ~1/7, and the Pauli exchanges are neg-
ligible. [Since in this region g(r) = G(r), the amplitude
g(r) could as well be replaced by G(r).]

The (conventional) spectroscopic factor S, which en-
ters into direct reaction theories [21], and the amount
of clustering, S, which is the weight of the cluster-core
component in ¥ [4,19], are given by

S=/dr|g(r)|2, S=/dr|G(r)|2.

The formation amplitudes produced by the shell
model, the cluster model, and the hybrid model are
shown in Fig. 1. (Note the magnification of the shell-
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FIG. 1. Formation amplitudes in the pure shell model

(multiplied by 10, dotted line), in the pure cluster model
(dashed line), and in the combined model (solid line).

model curve.) The curves show the enormous importance
of the inclusion of the cluster states. The amplitudes of
the amount of o clustering of the three models are com-
pared in Fig. 2. In the pure cluster model G(r) has the
shape of a radial wave function and, as is assumed in
Ref. [1], has 12 nodes. But the shape of G(r) of the shell
model is as irregular as those in Refs. [4, 5], and, in agree-
ment with Ref. [11], its contribution distorts G(r) of the
full model as well.

The width, calculated with ag=10-12 fm, has an un-
certainty of £10% due to the graininess of the cluster
basis. The result, '=1.45x10"15 MeV, agrees with the
experimental value (['=1.5x10"1% MeV) very well.

The spectroscopic factor is S=0.025, which is 20 times
higher than the best shell-model estimate [5, 22]. The
amount of clustering, $=0.302, is also substantially
larger than previous microscopic estimates (~0.01 [23]).
At the same time the ratio §/S=12 is much smaller than
ever assessed (~300 [23]), obviously because g(r) and
G(r) are dominated by the large peaks out of the nu-
cleus more than formerly believed, and there the Pauli
effects are smaller.

The dependence of these results on the input param-
eters has been subjected to due scrutiny. They were
found to be rather insensitive to the choice of the nucleon-
nucleon force, to extensions or minor truncations of the
basis, etc., provided three plausible conditions are ful-
filled: (i) The basis should span the spatial region re-
quired by the formula of I'. (ii) The decay energy should
be correct. (iii) The s.p. potentials should be consistent
with the § values and should not differ too much from
our realistic choice [17]. Thus, for instance, with B-1/2

= G(F), shell model
—————— G(r), cluster model
J —Glr), shell +

] cluster model

r(fm)
FIG. 2. The amplitudes of the amount of core+a cluster-
ing in the pure shell model (dotted line), in the pure cluster
model (dashed line), and in the combined model (solid line).
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reduced by 1%, T' is enhanced by a factor of 2.5, but
with proportionately reduced potential radii, the origi-
nal ' (as well as S and S) is restored, provided that the
s.p. potential depths are readjusted in each step to pro-
duce the same energy. Since, however, neither the s.p.
potentials nor their correspondence to the h.o. parame-
ter are sharply defined, the prediction for I' might well
have been a factor of 2 or 3 larger or smaller. Such an
uncertainty must be inherent in any other models of «
decay as well.

To sum up, we have reproduced the absolute a-decay
width of the g.s. of 2!?Po in a microscopic model con-
taining no free parameters. Since the best shell-model
calculations [5, 6, 8], which underrate ' by an order of
magnitude, were only able to allow for correlations be-
tween like nucleons properly, the present improvement
can be interpreted as a result of a treatment of all cor-
relations on the same footing. In view of the agreement
of the width with experiment, the high value (0.302) ob-
tained for the amount of « clustering can be considered
realistic. Microscopic calculations have as yet revealed
such high degrees of clustering only in light nuclei.

This result is, however, consistent with the good per-
formance of the model of Buck, Merchant, and Perez [1,
13], which assumes S=1 and treats G(r) as a wave func-
tion. This model describes a whole range of cases of
cluster decay, including the « decay of 2'2Po, and its
success helps to view our results over a more general
background. One can thus infer that the high amount
of clustering must be a general property of the decaying
states of heavy nuclei.
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