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Exact Solution of a Phase Separation Model with Conserved Order Parameter Dynamics
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A pairwise particle-exchange model on a linear lattice is solved exactly by a new rate-equation
method. Lattice sites are occupied by particles 2 and B which can exchange irreversibly provided the lo-
cal energy is reduced. Thus, the model corresponds to a zero-temperature Kawasaki-type phase separa-
tion process. As a result of local order parameter conservation, the dynamics reaches a frozen state at
large times, the structure of which depends on the initial conditions.

PACS numbers: 82.20.—w, 05.40.+j

Recently there has been much interest in modeling
phase separation and spinodal decomposition [1] by sim-

ple irreversible, eA'ectively zero-temperature low-dimen-
sional stochastic dynamical systems [2-4]. Specifically,
some variants of nonconserved order-parameter dynami-
cal models in D=1, corresponding effectively to T=O
Glauber-type spin systems, have been solved exactly for
properties such as the structure factor and average
domain size (as functions of time t); see [4] for details.
The underlying mechanism leading to cluster growth in

D =1 is pairwise annihilation of interfaces separating or-
dered domains. The interfacial motion is difT'usional and
it corresponds also to certain diA'usion-limited particle an-
nihilation models [4-12].

The T 0 limiting model involves interface annihila-
tion which is a process lowering the local energy and
therefore has Boltzmann factor +~ associated with its
transition probability at T=O. Interface diAusion does
not change the local energy and therefore has Boltzmann
factor 1. Finally, interface generation (birth) has Boltz-
mann factor 0 (due to energy cost) at T=O. The T=0
models referred to earlier correspond to allowing for both
annihilation and diA'usion. However, one could also con-
sider processes with interface annihilation only. There
has been limited discussion of models of such stationary
annihilating particles (interfaces in the phase separation
nomenclature) in the literature [13-15]. Specifically, ex-
act D =1 results can be obtained [13].

The phase separation process in the latter, diff'usionless

case does not continue indefinitely (as it does in the
annihilation-with-difl'usion models). Indeed, considering
D =1, for instance, one can easily visualize that when in-

terfaces initially in "contact" are depleted by annihila-
tion, the resulting configuration still contains some isolat-
ed "unreacted" interfaces. Thus the system will actually
freeze in a certain partially ordered state which depends
on the initial state —a direct manifestation of the irrever-
sible (nonergodic) nature of the T=0 dynamics.

Let us now turn to conserved order parameter, spin-
or particle-exchange kawasaki-type dynamical models.
There are several diAerences as compared to the noncon-
served models just surveyed. Notably, interfacial pro-
cesses even at T=O are more complicated for the con-

. . . BABA. . . — . . . BBAA. . . . (2)

Note that three interfaces (A-8 or 8-A bonds) "reacted"
to yield one interface. Particle exchanges that do not

change energy locally are possible in configurations like

. . AABA. . . — . . ABAA. . . , (3)

and three similar reflected and/or relabeled (A 8)
configurations. Here hopping of an interface must be
mediated by the presence of another, nearby interface.

Thus interfacial dynamics in the particle-exchange
models is more involved than in the nonconserved case,
even at T =0. Specifically, energy-conserving interfacial
motion, (3), is no longer simple free difl'usion. Thus,
freezing rather than full phase separation occurs asymp-
totically for large times in models with both energy-
lowering and energy-conserving moves allowed, or with

only energy-lowering moves allowed. In the former case
the D =1 frozen state contains single interfaces while in

the latter case both single interfaces and pairs of inter-
faces are "frozen in." Several numerical studies were re-

ported [16-19]of such particle-exchange models for D up

to 5. As in the nonconserved case, some of the properties
of the D =1 models are diAerent from D & l. However,
the general expectation of the "freezing'" of the domain
structure at large times applies, for conserved dynamics,
at all D.

Derivation of exact D = 1 results for conserved-

dynamics models proved considerably more di%cult than
f'or the nonconserved models. Palmer and Frisch [18]
developed a method by which the asymptotic (t =~)
density of the residual, frozen-in interfaces for the dy-
namics with energy-lowering moves only, (1),(2), can be

served case. Specifically, let us consider the D =1 binary
AB-mixture model: Each site of the 1D lattice is occu-
pied by particle A or particle B. The locally conserved
order parameter is the diA'erence of the A- and 8-particle
densities.

Nearest-neighbor particle exchanges can lower local
energy (reduce number of interfaces) in the following
configurations:

. . . ABAB. . . —. ~ . AABB . . ~,
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calculated, starting from the initially fully "mixed" alter-
nating AB state. More recently, Elskens and Frisch [20]
extended this approach to allow calculation of the rate of
approach to the freezing density, and also obtain results
for the initial state randomly populated by the equal-
probability mixture of A and B.

In the present work, we present the full time-dependent
solution of the D=l model. We use a new method in-

spired by techniques developed in studies of D=l ran-
dom sequential adsorption [21-23]. The solution is ob-
tained for both alternating and random initial conditions,
and it recovers all the asymptotic results of [18,20].

We consider a linear lattice each site of which is occu-
pied by either particle A or particle 8 Init. ially, the
particle arrangement is alternating (denoted "alt"),
. . . ABABABA. . ., or random (denoted "ran"). In the
former case we neglect end effects; all our calculations
will be for the infinite linear lattice (as opposed to
[18,20]). In the random initial case, we assume that each
site is either A or B with equal probability, at time t =0,
so that the initial densities of A and 8 species are 50%.

The dynamics consists of particle exchanges which de-
crease the number of "broken" bonds (interfaces) A-8
and 8-A. Thus the allowed moves are (1) and (2), i.e.,

only pairs of particles centered in a fully alternatively or-
dered group of 4 can exchange thus reducing the local
number of interfaces from 3 to 1. We assume asynchro-
nous, continuous-time dynamics: Each allowed-configu-
ration nearest-neighbor pair AB or BA undergoes the ex-
change process, i.e., the particles switch their lattice sites,
at the rate R, independent of other exchange events. As
is well known, in the continuum-time limit of asynchro-
nous dynamics one can disregard interference of ex-
changes of pairs which share a site, such as the two pairs
sharing the central A site in . . . ABABA. . . . The rate
parameter R will be incorporated in the time variable so
that we denote the physical product Rt simply by t
(effectively setting R =1).

Our aim is to calculate the density of interfaces, l(t),
i.e., the fraction of A-8 and 8 Abonds, as a-function of
time. Initially we have

I,i (0) =1 and I„„(0)= —,
'

. (4)

Our method of solution involves calculation of proba-
bilities P(k, t) that a randomly selected continuous group
of k ~ 3 lattice sites is fully alternatively ordered, i.e.,
that it is occupied, at time t, by k particles ABAB. . . or
BABA. . ., where the sequence is alternating and k-site
long. Note, however, that we do not impose any condi-
tion on the configuration outside this group. Thus, the al-
ternatively ordered region need not be exactly k-site long,
and in fact it may be part of a longer alternating se-
quence of sites, at one or both ends. In this respect our
definition differs from earlier works and follows instead
the ideas developed for random sequential adsorption
models [21-23].

The rate of decrease of the interface density is given by

dI(r) 2P(4 )
dt

(5)

while the number of single interfaces in the final state can
be calculated as the difference I(rrrr) —I(('"" 1(rre). In-
deed, only the probability P(3,t) remains finite as t
all P(k & 3,t) vanish in the large tlimit -(see explicit re-
sults below).

The decrease of the probability P(k, t) with time is
governed by the following rate equation:

= (k —3)P(k, t)+2P(k+ I, t)
dt

+2P(k+2, r) (k~ 3). (7)

The first term is the rate at which the alternating order is
disrupted by pairwise exchanges of pairs such that their
"defining" four sites, i.e., the original pair sites and the
two neighbor sites on both sides, fall fully within the k
group under consideration. The second term corresponds
to exchange events of the pairs which are located at the
two ends of the k group. Indeed, for an end pair to lie
within 4-sequences (1) or (2) which corresponds to the
allowed-exchange configurations, our k group must in
fact be part of a larger ordered group, of length k+1, in-
dicating all the four "deciding" sites of a given end pair.
(One of these sites is external to the original k group. )
Finally, the third term corresponds to disruption of alter-
nating order due to exchange of the end sites of the k
group with their nearest neighbors just outside the k
group. For one of these two pairs of sites which are half
external to the k group to exchange, the four "deciding"
sites require consideration of a (k+2)-site-long extended
group.

The rate equations (7) form a relatively simple hierar-
chy only in D =1. For D & 1, k groups are replaced by
more complicated clusters and no exact solution is possi-
ble by this method. The exact rate equations (7) must be
solved with the following initial conditions:

P,(r(k, O) =1 and P„„(k,O) =2'

The solution can in principle be obtained by the gen-
eration function method. However, a much simpler way
is to notice that the hierarchy (7) is solved by the ansatz

where the factor 2 accounts for the reduction by 2 (from
3 to 1) of the local interface number in each exchange
event. The factor P(4, () is the probability that a ran-
domly selected group of four sites is one of the allowed-
exchange configurations, (1) or (2). As already men-
tioned, at t =~ only single isolated interfaces and isolat-
ed pairs of nearest-neighbor interfaces survive in a frozen
state. The number of interfaces which are paired up is in
fact given simply by

1(paired)(~) 2p(3 ~)

3687



VOLUME 69, NUMBER 25 PH YSICAL R EV I EW LETTERS 21 DECEMBER 1992

1.0

0.6

0.4

0.2—

ble dynamics leading to frozen states is of course the
dependence of the final state on the initial conditions.
The explicit results (11)-(16)are, to author's knowledge,
the first exact time-dependent expressions available for
conserved-dynamics models. It is hoped that the method
of solving the a=1 models will be used to obtain addi-
tional exact 1D results as well as new approximation
schemes in D & 1.

The author wishes to thank Professor H. L. Frisch for
helpful comments and suggestions.

FIG. 1. Lower curve: Density of interfaces, l(t), for alter-

nating initial conditions; see (11). Upper curve: Density of in-

terfaces for random initial conditions; see (14). The curves

plotted are 1(t)/1(0), where the initial densities are given in

(4).

P(k, t) =P(k, 0)Q(t)e
for both alternating and random initial conditions (but
not generally). A straightforward calculation then yields

(9)

Q,u(t) =exp(2e '+ e ' —3),
(io)

Q„„(t)=exp(e '+ —,
' e "—

—,
' ) .

Collecting all the results and definitions, (4)-(10), and

solving for 1(t), yields, after some algebra, the results

2 +2

e4 4 l+e

t 2

I,u(~) =
1
—

4
e' dz =0.450898,4g~

I f"" (~) = =0 0995742
at 3e

3/2

I (t=—— dz,9/4 J ] y()/2)e

t 3/2
I (~) =—— e' dz =0.362957,

9/4

I ~"" ( ) = =0.143252.1
ran

2 S/42e

(i 2)

(i 3)

(i4)

(is)

(i6)

The functions (11) and (14) are plotted in Fig. 1. To
facilitate comparison, their values were normalized by
I(0); see (4). The most profound feature of the irreversi-
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