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Computation of the Optical Conductivity of the t-J Model Using Anyon Techniques
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The zero-temperature optical properties of the i-J Hamiltonian are computed using the formalism of
anyon superconductivity. Quantitative agreement is found with exact diagonalization studies.

PACS numbers: 71.28.+d, 74.65.+n, 78.20.Ci, 78.30.Er

e, .,=g ~
- gt~c,. +—s, s, ,

J
(,i,j ) cr

where S; =
2 ot, is formally equivalent to the Hamiltoni-

an

P Pf+ Pb

with

r

+X
t

——b; b, b,b;+ lz,kl't, —
(i,j),

(2)

The discovery of high-temperature superconductivity
has increased interest in model systems of electrons in-

teracting with repulsive forces only. The simplest of
these, the t-J Hamiltonian, has received particular atten-
tion. The behavior of this system is still controversial in

part because conventional many-body techniques do not

describe it well. In this Letter we show that the newly

developed methods of anyon superconductivity [1-3] may
be applied to this problem and yield results in quantita-
tive agreement with exact diagonalization studies.

Our calculations involve the use of the U(1) lattice

gauge theory description of this Hamiltonian [4] together
with its commensurate flux saddle point [5]. Recently,
Rodriguez and Dougot [6] proposed using a simple per-

turbation expansion of this gauge theory, similar to that
successfully applied to the flux-free saddle point [7], as a

practical computational technique. However, the particu-
lar approach suggested by them, like others using slave-

boson techniques, becomes unmanagable at low tempera-
ture because of the tendency of the bosons to condense.
We shall show that a modification to their scheme elimi-

nates this technical difficulty, leads to charge-2 super-

fluidity at zero temperature, and agrees with numerical

calculations of the optical conductivity of this system

based on small clusters.
The t -J Hamiltonian

where b;t and ft create a slave boson and fermion of spin

a, respectively, on site i, p; is a Lagrange multiplier con-
straining the total number of bosons plus fermions on this
site to be 1, and g;, =adjt is a Hubbard-Stratonovich vari-
able. (i,j ) denotes the sum over near-neighbor pairs with

each pair counted twice to maintain Hermiticity. We
wish to compute the linear response of this system to per-
turbing electromagnetic potentials (p, A), which couple
as

e4t=ep(r;), AJ= A ds.hc4i (s)

We follow the usual custom of ignoring magnitude Auc-

tuations and writing gj =goexp(i&~I), where go is a con-
stant. The Fermi and Bose particle and current densities
are given by

0(f b) 1 t)(f, b) (f b) 1 t)+(f,b)

a; ' " ah ae,,
(6)

where b denotes the bond length. We confine our atten-
tion to the commensurate flux saddle point, which is

characterized (in Landau gauge) by the time-indepen-
dent values tb, =0 and H,.J tr(p/q) (xl —x;) (y;+yf )/b,
where p and q are integers related to 6, the number of
holes per site, by 8=1 —2p/q. Substitution of these for

1b; and 0;J in Eqs. (2)-(4) and (6) defines the "unper-
turbed" Hamiltonian P and paramagnetic current
operators j,"" ' . Our convention for lattice Fourier
transforms is
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The value of gp we assume satisfies

»z' = —(o le'lo) —(ol eb lo&, (9)

where lO) denotes the unperturbed ground state and N is
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the number of sites. This is twice the value obtained by
minimizing the Hamiltonian of Eq. (2) with respect to go.
This factor of 2 has been discussed previously in the con-
text of Gutzwiller projection studies [8] and has been
checked by us three ways: The value of gp=0. 96 for
8=0 gives a "boson" bandwidth of 4&2@at =5.4t, which

agrees with the -6t found numerically [9] for the spec-
tral function bandwidth in the limit of J 0 and 8 0.
The near-neighbor "boson" hopping matrix element gpt
=0.96t agrees with the -0 9t fo. und in variational stud-
ies [101 of the "holon" hopping matrix element. Finally,
the average energy gp J=0.92J of a "Fermi" excitation of

Pf agrees with the value 2 1VJbha(1) =0.9J found vari-

ationally [11] for the energy to create a "spinon. " This
factor of 2 becomes unreliable for 8& 0 and has been ap-
proximated in previous work [8] by 2/(1+8). Our work

ignores such corrections and thus overestimates gp at
large 6.

Let us first consider the Fermi part of the problem,
which has no low-temperature instability. Diagonaliza-
tion of the one-particle Hamiltonian /itf is straightfor-
ward and results in q distinct bands [12] characterized by
the energy scale J/2. The unperturbed Fermi polariza-
bility,

~ p oo

Wb IIf (0L T[j "' (t)j "'f (0)]L0) e ' —
~l Idt + (1 8"o)b'" (0L Pf L0)q 2

is obtained from this band structure by occupying the lower p bands with two spin species and computing the zero-
temperature dielectric response of the system as though it were a semiconductor. There is characteristically a large en-

ergy gap between the pth band and the (p+ 1)st and a quantized Hall conductance of

lim lim-q-0~-0 N h
'

for any value of p and q [1,2]. IIf defines the dynamics of the gauge field in the limit that the bosons are held fixed.

The gauge propagator is given to one-loop order by

~ p oo

2)f"=, '
(OLT[a" (t)a q(0)]LO)fe

— -"I Id
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where II)( ab" b is a gauge-fixing term [13]. Eval-

uating Eq. (12) in the (q, t0) 0 limit, we find that 2)j""
=ih/(2')e "" exactly This. is the radiation gauge (p
=0) version of the propagator assumed in previous stud-
ies of the —,

' -fractional-statistics gas [14).
Let us now proceed with the full calculation. Since

gauge fluctuations formally prevent the "bosons" from
condensing by transmuting them to particles obeying 2

fractional statistics, we shall follow precedent and stabi-
lize the perturbation theory by transforming the bosons to
their Fermi representation [14]. The transformed Bose
degrees of freedom consist of spinless fermions described

by the Hamiltonian of Eq. (4) with the commutation re-
lations of b; and b;t replaced with anticommutation rela-
tions. They interact with a fictitious gauge field described

by the (radiation gauge) propagator 2)z"s= ih/(ta)—
This gauge field is not to be confused with that

L

described by Eq. (12), and, in particular, does not couple
to the Fermi particles of Eq. (3). The latter is important
because the Hartree graphs involving this field no longer
sum to zero, but effectively reverse the sign of the excess
magnetic field seen by the spinless particles. The "unper-
turbed" polarizability of these particles is thus the tran-
spose Hh, . Hp is the polarizability obtained by occupying
the lowest q

—2p bands of the one-particle Hamiltonian
Pb, which is identical to P$ except for substitution of
the energy scale t for J/2, with spinless fermions. The
band filling is unambiguous, as in the case of IIf, because
of the distinct energy gap between bands q

—2p and

q
—2p+1. The Hall conductance of IIb is minus that of

11f [2]. Thus evaluating R, the response of the system to
externally applied electromagnetic potentials, in the ran-
dom phase approximation [14], we obtain

R=e IIb +IIb (2)f+Sc s)R =e lim [(IIb+IIst) '+(IIf+II i) '+ (II, ,+IIsf) l
a p

where

(13)

0

IIc s =—„2isin(q~b/2)/b
1

—2i sin (q„b/2)/b

—2i sin(q~b/2)/b 2i sin(q„b/2)/b

0 1CO (14)

is a lattice Chem-Simons term. Note that the double lattice periodicity of this expression follows from the definitions in
Eqs. (7) and (8). We ignore the interaction term in Eq. (2), which is appropriate in the limit of small h. The symmetry
of Eq. (13) shows that the approximations involved in Eqs. (12) and (13) are consistent, and that the reasoning works

3671



VOLUME 69, NUMBER 25 P H YSICAL R EV I EW LETTERS 21 DECEM BER 1992

equally well with the roles of "Bose" and "Fermi" re-
versed. The expression is similar to that of IoAe and Lar-
kin [4].

In Fig. 1 we compare the q =0 optical conductivity,

I
&xx Re xx

N
(I S)

calculated from Eq. (13) for the case of p/q =19/41 and
J/t =0.4 with that computed by Moreo and Dagotto
[15,16] using Lanczos diagonalization for a single hole on
a 4x4 lattice. Both calculations have been artificially
broadened for clarity. There is agreement in the overall

shape, energy scale, and absolute magnitude of the two
calculations. The peak at co=0 in our calculation is

infinitely narrow and is the oscillator associated with the
Meissner eA'ect. A feature similar to this, although not
necessarily narrow, is implicit in the Lanczos calculation.
The f-sum rule,

tr . tr e (T)
rr „(ro)dru= lim %'yy(ru) =

J P 2 — 2 6 2N' (16)

In Fig. 2 we compare this value with the Lanczos kinetic
energy [16] and with the "flux" energy obtained by Liang
and Trivedi [19], which is equivalent to a variational
study of the 2 -fractional-statistics gas using specific mul-

tiholon wave functions [2]. All three curves satisfy (T)
=2.5NtB for small 6, and thus correspond to the same ki-

where (T) denotes the expected ground-state kinetic ener-

gy, is only 40% exhausted by the finite-frequency conduc-
tivity [17]. The remainder defines the strength of the
missing "Drude" peak. Our value for this same fraction
is 40%. The broad continuum near 6 t=ut, which has
also been seen in a Schwinger boson study [18], may be
understood as a spin-wave shakeoff. Its position and
shape are relatively insensitive to 6 but change radically
in the limit of large t.

Using the f-sum rule to define (T) we obtain

(i7)

netic energy per hole. When 8 is arbitrarily small, (T) is

dominated by (0~'iVQO), and thus reflects the variational
energy of an isolated holon. The linearity of (T) over the
entire range of 6 shown in Fig. 2 indicates that this is true
even when 6' is large. This result is important because the
decrease in (T) due to the presence of (O~Pf ~0)

' in Eq.
(17) just compensates the increase in go required by Eq.
(9). Figure 1, for example, is computed using go=1.43.
The cancellation of these two effects causes (T) to reflect
the value of (0~ &$0) evaluated using the 6=0 value of
gp. This is consistent with previous variational work on
the properties of holons at finite 6 [21, and also with the
work of Liang and Trivedi [19]. We also note that Eq.
(17) evaluated with the go of Eq. (9) yields a J-
independent (T), which is consistent with the minimal J
dependence of the Lanczos results for (T) [16].

Superconductivity is indicated in our calculation by the
zero width of the Drude oscillator in Fig. 1 and a nonzero
Meissner kernel R~~(co) at ra=0. The ratio R~~(0)/
R~~(~) =0.6, which is determined primarily by the oscil-
lators in h ot=t continuum, is consistent with the 40%
Drude fraction found in tT„„.

Our calculation has several significant failures which
we attribute to its crudeness. Approximately 5% of the
oscillator strength of Fig. 1 is contained in a peak near
htu=7t, which correspond to no distinct feature in the
Lanczos result. IIb and IIf possess energy gaps of 0.40t
and 0.37t, respectively, which are 10 times larger than
the "gap" features seen in experiment and inconsistent
with numerical studies of the t-J model. The structure in

IIb and IIf at these energies does not produce structure in

8 and is invisible in Fig. 1. The sharp resonances in Fig.
1, such as that at 0.6t, are similar to those found in RPA
studies of the fractional-statistics gas [14] and are ar-
tifacts that disappear at higher orders in perturbation
theory. The splitting near hro =t may also be an artifact,
although this is not clear. It should be remarked that the
large-energy structure of the electron spectral function
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FIG. 1. Optical conductivity o „calculated using Eq. (15)
(solid line) vs the Lanczos result of Ref. [151 (dashed line).
J/t =0.4 for both.

Flu. z. lotal K&netic energy per s&te caicu&atea us&ng Eq.
(17) (solid line) and variationally by Liang and Trivedi [191
(squares) vs the Lanczos result of Ref. [16] (triattgles). Note
that only the Lanczos result depends on J/t and that this depen-
dence is weak. The value assumed is 0.4.
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calculated using this formalism [20] agrees roughly with
the large-energy structure found in exact diagonaliza-
tion studies. The Hall conductivity o„y(co) is large
(-0.2e /h) at frequencies to for which o„„(co) is large,
and is nonzero at co=0. This behavior, which is similar
to that predicted by Wen and Zee [21], is inconsistent
with the Lanczos results and with experimental searches
for optical activity in high-T, materials. a.

~ has been
found in studies of the fractional-statistics gas [14] to be
particularly sensitive to Feynman graphs omitted from
this calculation.

The gauge propagator at small q and co is eA'ectively
the sum of a piece that mediates fractional statistics and
a piece that behaves like that of ordinary electromagne-
tism, including a propagating "photon" and a 1/q
"Coulomb" interaction. Both of these have been seen in
studies of the fractional-statistics gas [14]. The "photon"
is equivalent to the Goldstone mode of the superfluid and
describes ordinary compressional sound. The "Coulomb"
interaction corresponds to the Magnus force between vor-
tices, to which the f and b particles are equivalent in
anyon superconductivity. Because the "photon" has no
energy gap, the fractional statistics it mediates is due not
to a Chem-Simons term in its effective Lagrangian, but
to a relevant term of order q, as was predicted by Wieg-
mann [22]. Inclusion of the divergent "Coulomb" in-
teraction in exchange and ladder graphs has little effect
at zero temperature but drastically changes the finite-
temperature behavior of R. Both the 1/q divergence
and the infinite lifetime of the "photon" are signatures of
superconductivity.

We wish to express special thanks to E. Dagotto and A.
Moreo for helping us compare with their Lanczos results.
We also wish to thank V. Kalmeyer, P. Wiegmann, and
D. Poilblanc for helpful discussions. This work was sup-
ported primarily by the National Science Foundation un-
der Grant No. DMR-88-16217 and by the U.S. Depart-
ment of Energy under Grant No. DE-FG02-90ER40542.
Additional support was provided by the NSF MRL Pro-
gram through the Center for Materials Research at Stan-
ford and by the Lawrence Livermore National Laborato-
ry under Contract No. W-7405-Eng-48. A.M.T. ac-
knowledges fellowship support from the National Science
Foundation.

[1] Y.-H. Chen, F. Wilczek, E. Witten, and B. I. Halperin,
Int. J. Mod. Phys. B 3, 1001 (1989); R. B. Laughlin, Sci-

ence 235, 525 (1988).
[2] G. Baskaran and P. W. Anderson, Phys. Rev. B 37, 580

(1988); Y. Hasegawa, O. Narikiyo, K. Kuboki, and H.
Fukuyama, J. Phys. Soc. Jpn. 59, 822 (1990); Z. Zou,
Phys. Rev. B 40, 2262 (1989).

[3] Z. Zou, J. L. Levy, and R. B. Laughlin, Phys. Rev. B 45,
993 (1992).

[4] L. B. Ioffe and A. I. Larkin, Phys. Rev. B 39, 8988
(1989).

[5] Y. Hasegawa, P. Lederer, T. M. Rice, and P. Wiegmann,
Phys. Rev. Lett. 63, 907 (1989);P. Lederer, D. Poilblanc,
and T. M. Rice, ibid 63,. 1519 (1989); B. Dougot, M.
Ogata, and T. M. Rice, Phys. Rev. B 43, 5583 (1991).

[6] J. P. Rodriguez and B. Dougot, Phys. Rev. B 45, 971
(1992).

[7] N. Nagaosa and P. A. Lee, Phys. Rev. Lett. 64, 2450
(1990); L. B. Ioffe and P. B. Wiegmann, ibid 65,. 653
(1990); L. B. Ioffe and G. Kotliar, Phys. Rev. B 42,
10348 (1990); L. B. Ioffe and V. Kalmeyer, ibid 44, 7.50
(1991).

[8] F. C. Zhang, C. Gros, T. M. Rice, and H. Shiba, Super-
cond. Sci. Technol. 1, 36 (1988); E. J. Mele and D. C.
Morse, Phys. Rev. B 42, 150 (1990).

[9] E. Dagotto et al. , Phys. Rev. B 41, 9049 (1990).
[10] Z. Zou and R. B. Laughlin, Phys. Rev. B 42, 4073

(1990).
[1 1] R. B. Laughlin and Z. Zou, Phys. Rev. B 41, 664 (1990).
[12] D. R. Hofstadter, Phys. Rev. B 14, 2239 (1976).
[13] C. Itzykson and J. B. Zuber, Quantum Field Theory

(McGraw-Hill, New York, 1980).
[14] A. L. Fetter, C. B. Hanna, and R. B. Laughlin, Phys.

Rev. B 39, 9679 (1989); C. B. Hanna, R. B. Laughlin,
and A. L. Fetter, ibid 40, 8749 .(1989); 43, 309 (1991);
Q. Dai, J. L. Levy, A. L. Fetter, C. B. Hanna, and R. B.
Laughlin, ibid. 46, 5642 (1992).

[15] A. Moreo and E. Dagotto, Phys. Rev. B 42, 4786 (1990).
[16] E. Dagotto, A. Moreo, F. Ortolani, D. Poilblanc, and J.

Riera, Phys. Rev. B 45, 10741 (1992).
[17] E. Dagotto (private communication). The ground-state

kinetic energy and Drude fraction reported in Ref. [16]
satisfy (T) =2.5Ntb and f=0.6 for small b. The numeri-
cal value of f for 8= —,', , which violates this rule, is unreli-

able.
[18] Y. M. Li, D. N. Sheng, Z. B. Su, and L. Yu, Mod. Phys.

Lett. B 5, 1467 (1991).
[19] S. D. Liang and N. Trivedi, Phys. Rev. Lett. 64, 232

(1990).
[20] R. B. Laughlin, Int. J. Mod. Phys. B 5, 1507 (1991);

Phys. Rev. B 45, 400 (1992).
[21] X.-G. Wen and A. Zee, Phys. Rev. Lett. 62, 2873 (1989);

Phys. Rev. B 43, 5595 (1991).
[22] P. B. Wiegmann, Phys. Rev. Lett. 65, 2070 (1990).

3673


