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Breakdown of Hydrodynamics in the Classical 1D Heisenberg Model

O. F. de Alcantara Bonfim

Texas Center for SuperconductivityU, niversity of Houston, Houston, Texas 77004

George Reiter
Department ofPhysics and Texas Center for Superconductivity, University of Houston, Houston, Texas 77004

(Received 30 March 1992)

Extensive spin-dynamics simulations have been performed to study the dynamical behavior of the clas-

sical Heisenberg chain at infinite temperatures and long wavelengths. We find that the energy and spin

show distinctly different dynamics in the isotropic system. The energy correlation function follows the
classical diffusion theory prediction, namely, it decays exponentially with q t. In contrast, the spin

correlation function is found to decay exponentially as q
' tint, implying a logarithmically divergent

diffusion constant and the failure of the usual hydrodynamic assumptions.

PACS numbers: 75.10.Hk, 75.40.61, 75.40.Mg

The investigation of the time-dependent behavior of
low-dimensional magnetic systems has significantly in-

creased over the past years [1,2]. Theoretically, both
analytical tools [3,4] and computer simulations [5-16]
have been widely used. In particular, Miiller [11] ana-

lyzed in some detail the time dependence of the spin auto-
correlation function of the classical Heisenberg model for
dimensionalities d=l, 2, and 3 at infinite temperatures
and observed a power-law long-time tail whose exponent
deviated from the classical diffusion theory prediction:
a4=d/2. For d 1 Miiller found the largest deviation
tt~=0.57. The deviations persisted to a lesser degree for
higher dimensions. These findings were strongly chal-
lenged by Gerling and Landau [13], who carried out an
extensive simulation for the spin autocorrelation function
to much longer times and found that the slope of the spin

autocorrelation in a log-log plot showed a tendency to de-
crease for increasing times. They conclude there is no
anomalous diffusion in d=1 much less in higher dimen-
sions and that the asymptotic behavior for the autocorre-
lation function is only reached at very long times. Subse-
quently Jian-Min Liu et al. [16] suggested that the com-
putational error in the numerical integration of the equa-
tions of motion affects the long-time decay of the auto-
correlation causing a crossover from anomalous spin
diffusion (a& —, ) to classical spin diffusion at some
characteristic time that depends on the accuracy of the
numerical integration. In the present work we give a
much more detailed analysis of this problem by simulat-

ing the q-dependent energy and spin correlations as well

as the respective current-current correlations. The pic-
ture that emerges is that although the energy diffusion
shows a classical diffusive behavior, surprisingly, the spin
diffusion shows a nonclassical behavior that is manifested
in all measured quantities. In particular the asymptotic
behavior of the autocorrelation is of the form Ce(t)
—(tint) 't ' (we show later in the paper that this
functional form explains the results of [11,16] and those
of [13]). There is thus a breakdown of the usual hydro-

dst/dt —JS;& (S;—t+Stpt) . (2)

This equation implies that both the total spin S P;S;
and the energy of the system are conserved quantities.
The spin-correlation function C, (q, t) (S(q,t) S(—q,
0)) can be shown to satisfy exactly the equation [19]

8C, (q, t)/8t -—,e(q, t x)C, (q, x)dx—, (3)

where the memory function 4(q, t) [20] is, for small q,

4(q, t) q (j,(q, t) j,(q, O))/(S(q, 0) S(—q, 0)). (4)

j,(q, t) J~e 'J[SJ(t)&SJ+t(t)l is the total spin cur-
rent, which is not conserved. It usually assumed that
4(q, t) decays on some microscopic scale (-J ') while

C, (q, t) must decay on a time scale that is arbitrarily
long as q 0. In this case for sufficiently small q

8C, (q, t)/Bt = —D,q'C, (q, t), (5)

where D, =Jo (j,(0,t) j,(0,0))dt is the spin diffusion

constant at infinite temperature. As a consequence of Eq.
(5) the spin-correlation function C, (q, t ) behaves asymp-
totically for small q and long times as

C, (q, t) -e (6)

By Fourier transforming Eq. (6) we find that the space-

dynamic assumptions as originally suggested by Bloem-

bergen [17] and van Hove [18]. We find no evidence of
anomalous behavior in two dimensions.

The system is described by the Hamiltonian

0 J$S; Sj. ,
&ij )

where S; are the three-dimensional classical vectors with

)S;( 1. The exchange coupling between neighbors can
be either ferromagnetic (J(0) or antiferromagnetic
(J &0). The sum (ij ) is over all nearest-neighbor pairs.
The equation of motion for each spin resulting from the
Hamiltonian (1) is
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and time-displaced correlation function C„(t)=(S;(0)
.S;+,(t)) takes the form

(a)

C ( )
1 r!—4aD t

(4xD, t ) ' (7)

in the limit of large times. The same discussion applies
for the total energy leading to an analog asymptotic be-
havior for the energy correlation functions.

The computer simulation in this work was performed
on a chain with N spins and periodic boundary conditions
imposed. A random spin configuration was used as an in-

itial condition for the spin dynamics calculations. The
time evolution of coupled nonlinear equations of motion

(2) was obtained by using a fourth-order fixed-step
Runge-Kutta integration procedure. The sizes of the
chains used ranged between 200 and 800 sites. The simu-

lation presented no detectable finite-size effects. The in-

tegration step used in the Runge-Kutta integration was

bt 10 2/J. Runs with integration steps 10 times small-

er showed no significant difference. For each randomly

generated configuration the vector S(q, t) =P,e' 'Sj(t)
was stored as a function of time. The integration was

performed up to times of t =200J '. The spin and ener-

gy correlations were calculated and averaged over many
samples. The number of samples ranged between 2000
and 15000 depending on the lattice size. Since there is

no controversy about the nature of diffusion for the ener-

gy, we shall mention the main results without presenting
the data. The energy-correlation function C, (q, t) shows

a distinct diffusive behavior with an exponential depen-
dence in time. For the autocorrelation function we find

the expected power-law decay (t '/ ). The energy
current-current correlation function does in fact decay to
a negligible value in times of order J. In contrast Fig.
1(a) shows that the spin-correlation function does not

scale as q t Indeed, .we find that the spin current-current
correlation function, for q=0, has a t ' dependence for

large t as seen in Fig. 2, and the integral in Eq. (5) does

not converge at all. This suggests, as is verified in Fig.
1(b), that the correct long-time dependence for C, (q, r) is

tint. In addition to that the spin-correlation function

does not scale with the wave vector as q but as q
'—

[Fig. 1(b)l implying a (r lnt) '/ ' — ~ decay for the

spin autocorrelation as depicted in Fig. 3. The uncertain-

ty in the exponent was estimated by plotting the data for
various exponents as in Fig. 1(b) and observing what

values gave a clear violation of the scaling relation. The
functional form of the spin autocorrelation found here ex-

plains the results of [11,16] and those of [13] thereby el-

iminating the controversy. The slope of the spin auto-
correlation function (in a log-log plot) is given by
—[I+I/In(t)]/2. 12 which for t —100 is —0.57. That is

exactly the result Cn(t) —t found in [11,16]. On the
other hand, the slope decreases for increasing times

confirming the results of [13]. The slope, however, does

not reach the value 1/2 predicted in [13] but the value

0.(,'—

(b)
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FIG. 1. (a) The logarithm of the spin-correlation function

C, (q, t) for the 1D classical Heisenberg model at infinite tem-

perature plotted against q t for various values of q ranging from

ir/200 (upper curve) to 5ir/200 (lower curve). The lines repre-

sent the simulation done in a lattice with 400 spins averaged

over 15000 random initial conditions. (b) Same data as in (a)
now plotted as a function of q

' t lnt. The straight line is the fit

using C, (q, t) exp( —0.543q2'2t 1nt).

1/2. 12. We should also point out that a scaling of the
form C, (q, t) =exp[ —0.537q (1+O.1 lnq)r lnt] fits the
data as well as the form shown in Fig. 1(b). The anoma-

lous q dependence is presumably due to a sensitive depen-
dence of the long-time behavior ofj,(q, t) on q as q 0
although we have not yet investigated this in detail.

Anomalous properties in low-dimensional systems (d
~ 2) are known to occur in models for incompressible

fluids [21]. The result there may be readily understood in

terms of mode-coupling theory [22], but that is not the

case for the present system, where mode coupling predicts
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FIG. 2. The spin current-current correlation function plotted
against the inverse of time. The slope of the straight line is
0.46. Here we used a lattice with 100 spins and averaged over
160000 random initial conditions.

diff'usive behavior. Similar computer simulations per-
formed in the dynamical spherical model for infinite tem-
peratures and long wavelengths also show that the spin-
correlation function does not follow the expected classical
diffusive behavior, although the exponents are different.
The leading term in an expansion of 4(q, t) in powers of
C, (q, t) for this model is precisely the mode-coupling ap-
proximation [23], so that the nonhydrodynamical behav-
ior must arise from vertex corrections. We have also ex-
tended the result for finite temperatures, and find that the
anomalous long-wavelength dynamics persist, with ex-
ponents that vary with temperature in a distinctive way
for the ferromagnet and antiferromagnet. The results
will be reported elsewhere. The presence of a single-ion
interaction of the form DP;(S;) in Eq. (1) will break
the rotational symmetry of the Hamiltonian. Numerical
simulations show that the asymptotic behavior of
C, (q, t) (S,(q, t)S, ( —q, 0)) follows the classical spin
diff'usion theory so isotropy is essential for the nonhydro-
dynamical behavior to occur. Physical realization of the
phenomena in magnetic systems seems to be present in

the 1D S 2 Heisenberg antiferromagnet TMMC [11],
although we have not yet reanalyzed the data with the
functional form of C, (q, t) suggested here.

In conclusion, we have performed extensive numerical
simulations of the dynamics of the 1D Heisenberg model.
The results show that the nature of diffusion for the ener-

gy and spin are very different in the isotropic model. The
energy decay follows the classical prediction, namely, the
energy-correlation function decays exponentially with q t
implying a power-law decay (I 'I ) for the energy auto-
correlation function. On the other hand, the spin-
correlation function decays exponentially with q

' tint

FIG. 3. The autocorrelation function Cp(t) (S;(0) S;(t))
vs time. The wiggly line is the simulation result. The continu-
ous line is the autocorrelation obtained by direct integration of
the fitted equation given in Fig. 1(b). The simulation was per-
formed as described in Fig. 1(a). The deviation at short times
is to be expected since we have used the asymptotic value of
C, (q, r) in calculating Cp(t).

leading to a decay of the form (t ]nt ) 'I ' for the spin
autocorrelation function; this is consistent with the fact
that the spin current-current correlation function at q =0
has a t dependence implying a logarithmically diver-
gent diffusion coefficient.

This work grew out of work begun while one of us
(G.R.) was a visitor at Universite de Paris-Sud at Orsay.
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