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The magnetic signals emitted by a moving A-B interface are calculated using the spin hydrodynamic
theory, including both the Leggett-Takagi relaxation and spin diffusion. The B-phase texture is ap-
propriately simplified. Most experimental observations are well accounted for.
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The phase transition from the 2 to 8 phase of
superfluid He is a highly singular one. It becomes hy-
percooled very early [1], its damping results from the An-
dreev scattering [2], and, due to phase coherence across
the interface, the growing 8 phase is colder than the
receding A phase at low interface velocities [3]. These
are aspects that are at least qualitatively understood. In
contrast, the bizarre magnetic signals that accompany the
A-8 transition [4] have remained a puzzle to date: Down

to temperatures around 0.75T~q, equilibrium values of
the magnetization ("nominal signature") are measured
on both sides of the interface; below it, deviation starts to
develop in the A phase and a precursor, moving with the
spin wave velocity c ahead of the slower interface, can be
observed. At still lower temperatures, the erratic distur-
bances become so large that reproducibility is all but lost;
and as c and the interface velocity u become comparable,
chaos subsides, while two unidentified magnetic objects, a
fast and a slow one, are observed.

These features and a number of other details can be
understood within a simple model involving only two vari-
ables: the longitudinal spin component S (parallel to the
field) and the dipole angle 8, the dynamic variable conju-
gate to S. (Other pairs of conjugate variables are, e.g. ,

the displacetnent vector and momentum in elasticity
theory, or the phase angle and density in superfluid hy-

drodynamics. ) Starting from their hydrodynamic equa-
tions of motion [5,6], we have obtained the stationary
solution, and found that it changes drastically as the in-

terface velocity u increases: There is a threshold velocity
u„where u, =1/H and u, = 30 cm/sec for H =3 kOe. If
u & u„ the solution is essentially a static twist, in both
the A and 8 phases, of the dipole angle 0 by less than tt.

The excess magnetization (produced by the transition to
a system with a smaller susceptibility) is quickly convert-

ed to orbital angular momentum by the dipole torque
within the "dipole healing length" of c/0 =2X10 cm
(0 is the longitudinal resonance frequency). Since this
length is so small, only the equilibrium values of magneti-
zation are observed and u & u, is the subcritical region of
nominal signature.

If u increases, so do the excess magnetization and the
dipole torque that strive to balance it. At u =u„ the di-

pole torque reaches its upper bound. So for u & u„ the
overstretched dipole torque starts to oscillate in space and
convert orbital angular momentum back into spin in the

appropriate intervals. This supercritical, alternating be-
havior would in fact go on forever, if it were not for the
spin diffusion that redistributes the spin density and

manages to eff'ect a small net amount of spin being con-
verted irreversibly.

The situation is mathematically equivalent to a pendu-

lum, with time and pendulum angle substituting for the
spatial coordinate and dipole angle, respectively. In addi-

tion, the pendulum is required to come to a standstill in

its upside-down position. The subcritical behavior is de-

picted by the pendulum that swings up with a finite veloc-

ity to the right angle to come to a standstill. A larger ini-

tial velocity must be compensated by a larger initial an-

gle. If the initial velocity is too large, however, the pen-
dulum starts rotating, with alternating conversion be-
tween the kinetic and potential energy. This is the
equivalent of the supercritical behavior. Now, damping
becomes necessary for the pendulum to come to rest.
And if the damping is weak, the new time scale is very
different from the old one. So, if u exceeds u„ the twist

texture of the A-phase dipole angle is spatially rather ex-

tended. (In the 8 phase, the subcritical stationary behav-

ior prevails. ) The excess magnetization, being produced
at an ever greater rate, yet only able to seep away slowly,
builds up in strength and spatial extent quickly. This

may well be the observed "region of excess magnetiza-
tion. "

For u =10 cm/sec and H=3 kOe, the spatial extent
of the excess magnetization reaches 20 cm. Obviously, to
build up such an extended stationary state takes some

time, and understanding the transient behavior becomes
important.

Starting at around u =10 cm/sec, one can neglect the

dipole torque, just as one ignores the eA'ect of gravitation

on the angular velocity of a quickly rotating pendulum.

Then the dynamics of the system reduces to two spin

wave step functions, where the steps propagate with ~ c
in opposite directions. (The situation is in complete anal-

ogy to the two second sound steps emitted by the inter-
face [3].) Moving ahead of the interface, the step in the
3 phase is probably the observed precursor. The two

steps and the interface are three discontinuities in the

magnetization, moving with c, u, and —c, respectively. If
u is large enough, they are of comparable sizes. %ith five

pickup coils providing simultaneous input and the possi-

bility of the spin wave pulses reflected oA both ends of the
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vessel and traversing the interface, it is easy to construct
jumbled signals, whose exact shapes depend sensitively
(and therefore irreproducibly) on times of flight. Pub-
lishing the magnetic signals of different runs (with
presumably slightly modified initial or ambient condi-
tions) the authors therefore had to resort to plots of vary-
ing colors. If u exceeds c, the interface rushes ahead,
leaving both spin wave steps behind. More experimental
data are needed to decide whether this scenario is in fact
connected to the observed fast and slow objects.

Now to our model: A planar interface in the x-y plane,
moving with u and subject to a field H, both along i. In
the A phase on the right, we have l, d J z, and the dynam-
ics is given by two variables S and 8: S is the spin
component along H, and 8 the angle between I and d, I
being fixed. In the 8 phase on the left, if we assume nlli,
n being the rotation axis, the same pair of variables is
relevant during phase transition. Now, 8 is the rotation
angle around n, defined as the deviation from the dipole
minimum OL. We shall justify this simplifying assump-
tion later, when the physics of the present model is
clarified. The equations of motion, for both phases and in
the frame of the interface, are [5,6]

(cI —».)co Dc)—' =C'c)'8 t1'f- .

(ci, —u c,I) 8= co+z(c'cl,'8 n'f—). (2)

The notations are D=spin diffusion coefficient, r =the
spin relaxation time, @=the (perpendicular) magnetic
susceptibility, y =the gyromagnetic ratio, co = y S/g—yH is the spin rotational velocity and proportional to
the excess magnetization @co/y, and f=dF/de where
eD=gD F/y is the dipole energy (Fg =

2 sin 8 and
Fa =

& [coseL —cos(HL+8)] /sin HL, with HL the Leggett
angle).

We first look for solutions that are stationary in the
frame of the interface. Setting pl, co=8,8=0 and elim-
inating co, we find the dimensionless equation

(1 —(|V—(2V )(V 8 f) =(ril+r12V—)Vf . (3)

With zp=zQ/cg fixing the length scale (cg =c —u,
cg/0 = 2 & 10 cm), we have V = (cg/0 )ci, and three
small dimensionless parameters: Dp = QD/cg = 3 & 10
zp=Qz, and up=u/cg (zp=6x10 in the A phase
and 0.3 in the 8 phase; up varies widely, but we shall
confine it to be smaller than —,

' ). Then the four explicit
parameters I,"1 =up[Dp+ zp(1+ up )], g2 =Dpzp(I + up ),
rii = (Dp+ zpup )up, and r12 =Dpzpup are also small com-
pared to 1. Neglecting all of them at first, we see that the
static texture V H=f =dF/de solves Eq. (3) approxi-
mately. This texture can be visualized as a pendulum in
potential —F, oscillating or rotating along zo, rather than
t. The potential is that of the gravitational field in the A
phase and has two dips in the 8 phase. The conserved
quantity is (twice) the energy E = (Ve) —2F.

Including gl and g2 but still neglecting ril and r12, we
can integrate Eq. (3) to obtain V 8 f=+P; exp(q;zp), —

where q+ = ~$2 ' since (i &&4(2. To avoid infinite
textural disruptions, we set P+ =0 for the A phase on the
right and P —=0 for the 8 phase on the left. This leaves
us with a thin boundary layer, of order gP, outside of
which the static texture is unperturbed. Including now
also gi and g2, but staying clear of the boundary layer,
the energy develops a spatial dependence

VE =2VH(ril+ g2V)Vf =2rii (E+2F)df/de. (4)
With gi, g2(&1, this implies a weak perturbance, effective
over many periods, of the static texture V 8=f. Indepen-
dent of the form of F, r12 does not contribute in Eq. (4).
This is easy to understand: Approximating V f by V 8,
we see that r12 is reactive and only renormalizes the
pendulum's mass. More importantly, one can also show
VE (0, i.e., the energy (leaving the interface) increases
into the 8 phase and decreases into the A phase. This
reduces the number of possible solutions: For zp
we require homogeneity (VH 0) and dipole minimum
(cD =F 0 or 8 0). Consequently, E = (Ve) —2F
vanishes as well. What is more, the dipole minimum is
where the maximum of the pendulum potential —F is.
The pendulum comes to a standstill (VH=O), and, there-
fore, is in its upside-down position (8=0). As a result,
there are two solutions for each phase. The singular one
with E =0 exists in both: The pendulum swings up at the
interface with a finite kinetic energy and spends it all to
reach the upside-down position. The rotating one, with
E & 0 at the interface, exists only in the A phase. It loses
its energy over many rotations, gradually coming to its
"awkward" position with E=0. The oscillating pendu-
lum, on the other hand, exists only in the 8 phase. It
starts with E (0 at the interface, gains energy while os-
cillating, and eventually comes to a stop, at E =0, some
distance away.

As we shall see later when studying the boundary con-
ditions, in the A phase the singular solution is realized for
low, and the rotating one for high, interface velocities,
while the 8 phase always entertains the singular solution.
So we only need to know the rate of damping in the A
phase. Since F and df/de vary on a different scale from
E, we can calculate the change in energy LIE =fdHVE/
Ve and distance hzp= fde/VH, both per period AH 2z,
to obtain VE=hE/Azp. They are BE=rliz/2' and

8@1/3, dzp=2z/WE and 2[2 —ln(E/4)] for E»1 and
E&&1, respectively. Note that hzo ~ for E 0, i.e.,
the texture is formally always infinitely extended. The
region of excess magnetization is Rp=f dEhzp/AE, in-

tegrated from E; at the interface to EI at a distant spot
with an excess magnetization that is still large enough to
be measurable. (The choice of the second spot is obvious-
ly to a large extent discretionary. ) The excess magnetiza-
tion density @co/y is obtained via Eq. (2):

(5)

(The term =z is smaller by a factor of zpup and can be
neglected. ) Now, Ve= —JE if E»1 and, when aver-
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a(u y'S+ gc '
c1,8) -0 =ua(ci, H)+ Aco, (6)

where dx =xtt —x~ and (x)—= —,
' (xg+xg) below. The

first of Eqs. (6) expresses the continuity of the spin
current across the interface and accounts for the fact that
the dipole torque is too weak to appreciably alter it on a
length scale of I,"2t «1. The second of Eqs. (6) comes
from 58 0 (phase coherence of the dipole angle across
the interface, for the same reason as for the phase [3,7])
and is obtained by setting A(8, 8) =0 in Eq. (2). Equa-
tions (6) are equivalent to the corresponding boundary
conditions for heat transfer [3], AQ =0 and h(p+ v„U, )
=0 or, in fact, for second sound shock waves [8]. As in

Ref. [3], dissipative terms =r, D are neglected. They
only lead to boundary conditions for the squashing modes

[9]. As a result of the smallness of the magnetic suscepti-
bility, the feedback of the spin dissipation to the interface
motion is usually feeble; hence we can take u and the
temperatures T~ and Ttt, calculated at zero field [2,3], as
an input to Eqs. (6) to determine the two amplitudes of
the spin wave step function. For u (c, we have

[co(1 —u/c)]~ =[co(1+u/c)]tt = —
2 uyHhg/(Ic) . (7)

The A, B-phase ratios co/yH of the excess to the equilibri-
um magnetization are, respectively, —

2 u(1T-u/c)

aged, VH= —2tr/Azp if E«1. Hence, the excess magne-
tization is large only if E is large. For the singular solu-
tion or the last rotation we can take Azp =200 (length of
the pickup coil) and up & 10 ' to conclude that
co&5x10 0 indeed yields a vanishingly small excess
magnetization.

From the consideration of boundary conditions below,
we shall learn that E; =10 for up =0.1 (or u =10
cm/sec). So even if we take the cutoff energy at Ef»1,
the region of excess magnetization Rp=(E; Ef—)4/rti is
still huge: For Ef =5, it is Rp=10 or R =20 cm. This
is also the length of the experimental cell, and one would

expect the vessel wall not to exert disruptive influence on

the stationary solution only if it absorbs the spin current.
Moreover, the approach to such an extended stationary
solution will certainly take a macroscopic, measurable
time interval and therefore warrants attention. For-
tunately, for E»1, or (VH) »F, one can neglect the di-

pole torque; then the spin dynamics becomes strictly
linear (if the co dependence of g and c can be neglected)
and is given by the spin wave behavior. In close analogy
to the second-sound pulses [3] sent out by the interface at
the instant it starts moving, Eqs. (1) and (2) yield two

spin wave step functions. In the laboratory frame they
are coHH(Tz+ct), where co= T-c8,8 and HH is the
Heaviside step function. These formulas remain valid for
u & c, except that both steps are then in the 8 phase.

We now consider the boundary, or better, connecting,
conditions across the interface, first for the spin waves.

They are

xhg(gc) '. Since kg&0, both co~ and cott are positive,
and especially the former suggests itself naturally as the
observed precursor. The three discontinuities in magneti-
zation are, in laboratory frame, respectively, at ct, ut,

c—t, and of the heights (@co/y)~, h(gH+gco/y), (@co/

y)tt. For u large yet not too close to c, they are of com-
parable size. The total signal of four or five pickup coils
depends critically on times of flights, and must therefore
appear jumbled and irreproducible.

The divergence of co~ = (1 —u/c) ' can be understood
as a compensation for the diminishing velocity c —u, with
which the spin wave carries the excess magnetization out
of the interface region. This divergence may be diverted

by (a) the pair-breaking critical velocity, (b) the co

dependence of g and c, and most intriguingly (c) the
greater thermodynamic stability of the A phase at large
values of co. If the divergence proceeds this far, there will

definitely be a strong feedback to the interface velocity,
possibly already observed.

For u &c, causality forces co&=—0. The three discon-
tinuities are then at ut, ct, and ct, with—the heights
Hhg+gcott/y, g co/+y, and @co /y, respectively, where

cog =co++co and co+ = —
2 yH(hg/g)u/(u+ c).

Now to the boundary condition for the stationary case.
Defining u+ @~A~/yHlhgl (u =3x10 2 for H=3
kOe) and P=(@Bett)tt/(gQctt)~, we can write the first
of Eqs. (6) as

VHA —PVHtt = —
up/up . (8)

The second of Eqs. (6), though certainly correct, does not

contain any useful information. In contrast to the spin

wave case, 8, 8~ =cl, Ho =0 is an integral part of the qua-
sistatic, stationary solutions and A(|1,8) =0 is trivially
satisfied. Instead, the proper boundary condition is back
to 68=0. Surprisingly at first, perhaps, these two are not

enough and we need two additional boundary conditions:
In the spin wave case, two boundary conditions determine
the amplitudes of the two outgoing spin wave pulses.
And the implicit and causal assumption is that the incom-

ing pulses have zero amplitude. For the quasistatic solu-

tions, since there is no time or causality, we need two ex-

plicit boundary conditions for each side, say E and 8,
making four altogether. Given the strong static charac-
ter, E~,tt and 8~ tt at the interface have to be determined

by minimizing the total textural energy, subject to the
constraint of d, 8=0, and of Eq. (8), which drives the sys-

tern out of uniformity. In the following, the minimization
procedure is sketched.

Minimal textural energy is achieved by the smallest
possible value of iE i, since it determines the extent of the
texture. So, for small up, Eg =Eg =0 and Vog (0,
VO~ )0 minimize the textural energy and yield two

singular solutions. [The chosen signs yield, for a given

up, the smallest spatial extent within four singular solu-

tions, cf. Eq. (8).] With 68=0, the two remaining pa-
rameters are equal, 0~ =0~=0, and determined by Eq.
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(8), or a(8) —= (2') ' +P(2Ftt) ' =un/u*. Now, a has
an upper bound, a,„=a(8o), where tan80= —(1+I/P)
xtanOL for both 8-phase minima. Therefore, this solu-
tion is no longer possible for uu/u» )a,„. Then E~
starts to grow, while Ett remains zero. [With Ett (0, Ett
and VO& could only decrease, with an accordingly larger
V8& as prescribed by Eq. (8). This would result in an un-
desirable extension of the texture in both phases. ] At still
lower initial temperatures, uo»u+, the 3-phase energy
at the interface [neglecting the 8-phase contribution
in Eq. (8)] becomes E; = (V8) = uo/u+. The region
of excess magnetization extends to Ra=4(E; Ef)/—rii= 4E;/Douo = 10 uu/u~, and its magnitude is
to = —f)uoV8= Qua/u+, yielding a ratio to equilibrium
magnetization of (idge/g)u ~/(cz —u ~).

This completes the calculation of our model interface.
Now the basic assumptions of our one-dimensional, longi-
tudinal model are critically reviewed. There are three
points. The first concerns the validity of the hydro-
dynamics, or Leggett theory of spin dynamics. Most of
the predictions in this paper are arrived at with broken-
symmetry concepts such as preferred direction, spin wave,
and dipole energy. These ingredients should remain valid
as long as the coherence length can be considered small
[10]. Spin diff'usion, on the other hand, is a valid concept
only if the mean free path ( is small. However, g should
be compared to the huge length scale Ro on which E re-
laxes rather than to c/A. Second, the assumption nllH is,
within the magnetic healing length of the 8 phase, cer-
tainly wrong [11]. However, even in a realistic model,
the results concerning the transient spin wave pulses (in
which the gradient energy dominates) and the A-phase
stationary behavior would remain unscathed. The 8-
phase stationary solution will change, though probably
not qualitatively, such as into an extended region of
strong excess magnetization: Any magnetization that is
not parallel to the magnetic field would be rotated by the
Larmor precession on a scale usually much smaller than
c/Q. Averaging over it, the leftover spin is longitudinal,
again with the typical length scale c/Q. In addition, the
sign of VE remains unchanged in a three-dimensional
model [51, as we shall discuss in a future publication.
Third, there is the textural critical velocity. It was pro-
posed [4] as the underlying cause for the stalled drainage
of the excess magnetization. We did not embrace this
possibility because the interface rushes over the system
with a high velocity, while the perpendicular motion of
the vortex lines is slow in comparison. Hence it is hardly
possible for the system to realize the required low textur-
al critical velocity. The pair-breaking critical velocity, on
the other hand, is too high [6] to be relevant.

In summary, we have studied a simple model in which
many features of the spin dynamics accompanying the
A-8 transition can be understood. We do not expect it to
be appropriate in every detail and we see a number of as-
pects that can be improved. But we believe that the
present model presents an adequate framework in which
the plethora of reported phenomena can be coherently or-
dered.

After submission of this Letter, we received a preprint
by Bunkov and Timofeevskaya [12] that studies the same
problem. Since they have neglected the dipole energy
and terms -u/c, their results pertain to moderately high
transition velocities, slow compared to c yet high enough
to emit spin waves. By explicitly considering reflections
and transmissions of the spin wave steps, they were able
to reproduce the erratic appearing experimental curves.
Their beautiful results confirm and complement ours in
the relevant velocity window.
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