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Self-Avoiding Surfaces, Topology, and Lattice Animals
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With Monte Carlo simulation we study closed self-avoiding surfaces (SAS) of arbitrary genus on a

cubic lattice. The gyration radius and entropic exponents are v=0.506+0.005 and 0=1.50+0.06 re-

spectively. Thus, SAS behave like lattice animals (LA) or branched polymers at criticality. This result,
contradicting previous conjectures, is due to a mechanism of geometrical redundancy, which is tested by
exact renormalization on a hierarchical vesicle model. By mapping SAS into restricted interacting site
LA, we conjecture ve= 2, IIIe =1, and 0e= 2 at the LA theta point.

PACS numbers: 64.60.Ak, 05,70.3k, 61.41.+e, 64.60.Kw

The importance of random surfaces is well established
in many areas of condensed matter and high-energy phys-
ics. These fields range from cell biophysics [1] to string
[2] and lattice gauge theories [3]. In this Letter we con-
sider a much-studied [4] model of lattice self-avoiding
surfaces (SAS), which also bears interestingly on the

physics of vesicles (close membranes like red blood cells)
[5]. SAS are constructed by gluing together plaquettes
of a cubic lattice; they are closed and do not self-
intersect: Every lattice edge belongs to either zero or two

plaquettes. Plaquette overlaps are forbidden; i.e. , each
lattice plaquette enters the SAS only once. While vertex
overlaps are allowed, they are not real connections, and

the corresponding vertex is counted twice in computing
the topological characteristic g, given by the number of

plaquettes plus vertices minus edges. The number of han-

dles, H, is related to g by g =2 —2H.
A major issue in SAS statistics is identifying what

determines the universality class of critical behavior
when, like in vesicle models, suitable fugacities K and ep

(p is an osmotic pressure, see below) control average area
and enclosed volume, respectively. Topological properties
connected to the intrinsic geometry of surfaces, like g, are
prime candidates. SAS with H restricted to be zero are
now known [6] to behave like branched polymers (BP), in

that thin ramified tubular configurations dominate the

asymptotic limit.
Recent arguments [7] proposed that, at p =0 ("flac-

cid" vesicle regime), SAS with arbitrary fluctuating H

should belong to a class different from that of the above
SAS constrained to be homeomorphic to the sphere
(H =0): The vesicles should suddenly either inflate or
condense, changing fractal properties drastically as soon
as the constraint is released [8]. Such behavior is incon-
sistent with analogies to lattice animals (LA), i.e., poly-
mers without the BP constraint forbidding cycles.
Presuming handles are formed by thin tubules, analogous
to LA cycles, the dense character of SAS corresponds to
behavior found in cycle LA only when a cycle-enhancing

where the sum is over surfaces, 5, with unrestricted H,
area ~S~, and enclosed volume V(S), and m is chosen big
enough (e.g. , m =2) to ensure critical divergence of G
and of grand-canonical averages of interest. 6 is implicit-
ly normalized to be a quantity per lattice site. Here p is

the internal minus the external pressure over kqT. For

p ~ 0, one expects singular behaviors of the form

and

[S[mIt (s) Pv(s)R(S)
(R)g

~ P 6 K - K, (p)
(3)

for the average grand-canonical radius. In Eq. (3) R(S)
represents the radius of gyration with respect to the
center of mass of S.

We determined 0 and v using a novel Monte Carlo
(MC) strategy based on an oct-tree data structure. Its
predecessor [6] was designed for the case of vesicles with

H =0. With the present code, we can test cases having
either an unrestricted or a restricted number of handles.

fugacity exceeds the theta threshold [9]. Indeed, we shall
show that in d =3 SAS do conform to the analogy with

cycle LA uninfluenced by such fugacity; the argument in

Ref. [7] fails because of the vanishing of a scaling ampli-
tude, the analog of which is nonzero in d=2. In this
Letter we further clarify the relationship between LA and
SAS in d=3 and find the dependence of the critical ex-
ponents on H for ensembles with a constrained number of
handles. We also find an exact mapping from a version
of our SAS model to an interacting site LA problem.
Hence, a recent argument for the 6-point exponents of
1=2 LA [10] can be extended to d =3.

Consider first the following generating function (model
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G ~gKIsleI v(s) gK6n 2lepn —g)—,npi
animals

(4)

with k =e~K and p =K representing the site fugacity
and edge Boltzmann factors, respectively. G embodies a
model of site LA, which is expected to display 8-point
collapse [9]. This particular LA model forbids surface
disconnections, i.e., internal hollows. This computational-

ly important restriction should leave universal properties
unchanged; e.g. , holes appear irrelevant for d=2 LA at
the 8 point [10]. Since G =(K|1/t)K) G, G and G must

have the same singularity structure: The LA and the

K

Genus is monitored by local checks on the oct-tree after
each MC step (MCS). The trial move adds or removes a

cube with at least one face in S. Any genus-changing
move can disconnect the surface, even one adding a cube:
"Corking" a bottle disconnects its inner and outer sur-

faces. Connectivity is a global property: To see if such a

step is allowed, we must check the whole surface in our
code by traversing the graph defined by the plaquettes.
Steps with a connectivity check require time O(lSl) vs

O(l ) for ordinary steps. Hence, instead of the previous
O(k) running time for a calculation of k MCS on a sur-

face with H =0, the general case requires much longer
time O(k & l

S l) Prob(AH &0)).
Model 2 generalizes model 1 by allowing edge overlaps,

with appropriate double counting. (Vertices can then
count up to 4 times in computing g. ) The corresponding
G in Eq. (I) acquires an important new physical mean-

ing: It is directly related to the generating function of
site LA interacting at each edge joining occupied sites.
To verify this assertion, one can place an animal site at
the center of each elementary cube enclosed by S. De-
noting the number of sites by n = V and the number of
edges connecting nearest-neighbor sites by I, we have
6n =2I+lSl and can write

vesicle problems must have the same critical singularities.

G and G are not defined once p & 0. If K, (0) & 0, then

one expects the line segment with p =0 and K (K, (0) to

constitute a locus of droplet (first-order) singularities for

the problem [11] (cf. Fig. 1). We focus below on the

critical behavior for p =0 as K K,(0), and the cross-

over from this regime to the deflated (p (0) one.
Proceeding as in Ref. [6], we obtained v, the exponent

for the radius of gyration, fitting both Eq. (3) and the

canon ical law

~lsl =wR(S)
R ~= N'

nisi =tv I
(5)

T6=

xx

for both models 1 and 2. Data are displayed in the lower

pair of log-log plots in Fig. 2. From either the canonical
or grand-canonical fit, we obtained v=0.506+ 0.005 for

model 1. Model 2 converges to the asymptotic regime
more slowly; a straightforward MC analysis gives v

=0.48 ~0.01. These values clearly suggest the accepted
v of 2 for BP and LA in d =3 [12]. Further evidence

that SAS with arbitrary g (or H) belong to the universal-

ity class of LA comes from determinations of 0 and

K„(0).These quantities are best obtained from plots of
&lSl)

' vs K, noting

&l~l&, =o,~ =K — K, (0)~- ~, to)
— K„(0)—K

Our result 0=1.50 ~0.06 for model I agrees fully with
the value —', expected for BP and LA in d=3 [12]. The
result for model 2, 8=1.7+ 0. 1, again suffers from poor-

0 P

FIG. 1. Schematic plot of the K vs p phase diagram. Only in
the shaded region is G convergent. (K, (0),0) maps into
(pe 3.19, Xe 0.03) of the LA problem. K, (p) —K, (0) ee lp l

for small p(0, consistent with p pe 1. Along the dashed
vertical segment p 0, K(K,(0), there is a locus of droplet
singularities.

In(N)
FIG. 2. Log-log plot of the canonical mean radius of gyra-

tion &R)n vs /V, at p =0. For model I (0), at K =0.568, and for
model 2 (+), at K =0.556, displaced up by 1.0, the straight
lines illustrate the fits given in the text. In contrast to these
runs at L =1.0, the upper two sets of data are from runs at high
handle fugacity L =16.0, for model 1 at K =0.5615. If the han-
dle number is axed, in the depicted case (0) at H =2, v is still
about z . (The data are displaced up by 2.0.) If H is unre
strieted (x), v appears to cross over to a value closer to I/d:
The dashed line has a slope of 0.32. (These data are displaced
up by 3.0.)
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er convergence. K, (0) =0.577 ~0.004 for model 1 is only slightly smaller than the corresponding critical coupling for
SAS with H=O (0.578~0.005 [6]). This result is reminiscent of LA compared to BP. The critical fugacity of LA,
which are allowed to have nonzero cyclomatic number (corresponding to H )0 for SAS), is only slightly, but definitely,
lower than that of BP [13]. For model 2, K, =0.560+ 0.004.

We also estimated the asymptotic behavior of the volume-to-surface ratio (V)tv/N, where (V)N denotes the average
volume enclosed by SAS with N plaquettes [as in Eq. (5), with V replacing R]. For example, for model 1 we find nu-
merically that the ratio approaches a constant (-0.306) as N ~. This and the preceding results are inconsistent
with expectations from Ref (7J.where, for model 1, the existence was established of a relevant exponent y =d =3, asso-
ciated with a scaling field v ~p, to leading order, at the fixed point describing p =0 critical behavior. This exponent
should control the crossover to the deflated regime. Specifically, simple scaling considerations lead to

t) lnGs t) lnGs
-o,tr- |I

&p p ptc tc, (o) Bv
Q, Q WO, t' 0

(7)

where Gs is the singular part of G, p yv, and u is the
corresponding scaling field. Here u =b ' 'u ec b ' '(K,.
—K), where b is a length rescaling factor. Equation (7)
means that the region enclosed by critical SAS should be
"dense, " i.e. , have fractal dimension d =y =3. Similar
[14] and other methods [15] showed that d=2 self-
avoiding rings (SAR) are in fact dense. From Eq. (7)
and since N —[K, (0) —K] ', we expect

(V),/N —N&-' =N'"-'

In grand-canonical analyses of both models 1 and 2,
(V)z/N approaches a constant asymptotically, implying

p =1 and, thence, y = v ' =2, not 3.
The reason that SAS need not be dense is that the

renormalization-group (RG) argument leading to P=yv
=3v fails if QGs/Qv vanishes. The scaling term on the
right-hand side of Eq. (7) then has zero amplitude, and
the y =3 exponent does not influence critical behavior.
This result again conforms with the picture that SAS
with arbitrary H consist essentially of thin tubules, which

aggregate to form LA. A scaling field i ~p should sti11

be associated with the exact exponent y =3 [7]; only the
assumption of a nonzero amplitude in Eq. (7) appears
unwarranted in hindsight. When t)lnGs/t)v!„-~p, =p=0,
this derivative should be replaced in Eq. (7) by

t)lnGs/Bu!„-~o,, =o and y by 1/v, yielding again p= 1.
This gives the dominant contribution to (V) if u and i are
the only relevant scaling fields, since clearly u also de-

pends on p. The vanishing amplitude in the leading
singular behavior of (V)z is particularly surprising since
its analog for d =2 vesicles must be nonzero [14,15].

To gain insight into why t)Gs/s)v might vanish, we

studied by exact RG methods a vesicle model (a static
ringlike one-tolerant trail) on a d=2 Sierpinski gasket
[16,17]. As the attractive interaction (for double visits of
sites) varies, the ring passes through a sequence of three
critical regimes [16], including one in which the enclosed
area is proportional to the perimeter and lacks the fractal
dimension d of the underlying gasket (corresponding to
d =3 in the SAS case). We verified that, while the
linearized RG transformation at the corresponding fixed

point has an exponent y =d, the singular generating func-
tion does not depend on the corresponding scaling field;
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hence, d does not affect scaling behavior. Similar behav-

ior occurs for our SAS, at least in model 1. For the other
two regimes, in contrast, the vesicle is dense, and the di-

mension y =d also associated with the respective fixed

points plays a role, reminiscent of SAR in d =2 [17].
Presumably such scaling-field independence occurs in

geometrical critical phenomena whenever the scaling be-

havior can be explained by models which are in some
sense stripped-down versions of the original one. Our
SAS, once coarse grained, have the same scaling proper-
ties as LA, which are constructed, e.g. , from lattice edges
rather than plaquette tubules with finite cross sections.
The dependence of various singular quantities on a field

like i may well disappear in all regimes which show criti-
cal LA behavior. Thus, models 1 and, most likely, 2 ex-
hibit what we call "geometrical redundancy" [18], lead-

ing to a decrease in the number of parameters on which

the si ngular quantities directly depend. Redundancy
occur~ in SAS but not SAR because ramified conftgu
rations dominate only for SAS. To assess in general
~hen it occurs, one must kno~ more about singular
quantities than is at ailable from linearized RG transfor
niati ons.

For LA the exponent 0 depends on the cyclomatic
number, c, in ensembles with a fixed number of cycles:
Specifically, 0, =8—c [19]. Moreover, once c is fixed,
the critical edge fugacity assumes the value of the r =0
case [20]. To see if 0 depends similarly on H for SAS,
we performed extensive runs for model 1 at different K's,

both with the restriction H = 1 and H =2. I n order to
sample surfaces with H ) 0 more e%ciently, we modified

G by inserting in Eq. (1) a factor L, with handle

fugacity L ) 1 to enhance loop formation. With H fixed
but arbitrary, v does not change appreciably compared to

the case of I =1 and unrestricted topology. Similar to
LA, K,. (0) is insensitive to H: For H =1 and H =2,
K,. (0) =0.578 ~ 0.006 and K,.(0) =0.579 ~ 0.008, respec-

tively, both very close to the H =0 value [6]. However,

fits of Eq. (6) gave OH=|= —0.5 ~0.5 and OH=z = —2.3
+ 1.0; in spite of the relatively large errors, these two re-

sults (and OH=p earlier) are clearly not consistent with

the above relationship for LA with H simply replacing (..
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This dependence of 8 on H at p =0 seems to be the only
peculiar eAect of topology on SAS critical exponents.

On the other hand, the similarity with cycle LA sug-

gests that, as L increases, the SAS should undergo a 8
collapse into a dense configuration. As shown in Fig. 2,
at high L and unrestricted (fluctuating) H, v appears to
take on a value close to I/d. We are currently testing
whether the transition still belongs to the 8-point univer-

sa)ity class of cycle LA in d =3, about which we can con-
versely learn more from our results for model 2 at p =0
and L =I: Starting with the mapping implied by Eq. (4),
following arguments similar to those in Ref. [10],we find

that the point (K,p) =(K,(0),0) is also multicritical for
our LA problem. Moreover, since (K(K,(0),0) is a
line of droplet singularities, we identify (K,(0),0) with

the tricritical 8 point (cf. Fig. I). The two scaling fields

u and v, expressed now in terms of hA, and hp, i.e., the
deviations from the tricritical point, serve as the relevant
fields of the 8 fixed point. Since we obviously expect Gs
to be independent of v, like Gq, our results for model 2

suggest the conjecture ve = —,
' and 4e = I for our d =3 cy-

cle LA. If singularities are controlled by u only, its di-
mension determines ve, and the crossover exponent pe
must be unity, like p above, with the critical fugacity
A.„(p)varying linearly with hit near the 8 point (cf. Fig.
I). Hence, at the 8 point in d=3, our restricted LA
should have the same exponent v (viz. 2 ) as these LA
[21], as well as ordinary BP and LA [12], display in the
swollen regime. Furthermore, MC analysis of (V) as a
function of A. , for k ke and p =pe, yields ee=l. '7

~O. I, fully consistent with the () obtained for model 2

via Eq. (6). We expect both 8's to assume the LA value
of —', [12]. Presuming internal hollows are irrelevant for
universal properties, we conjecture that the e-point ex-
ponents have the same values for unrestricted cycle LA.
Nonuniversal quantities like Ae and Ite will, of course, de-

pend (weakly) on the restriction. From our mapping we

deduce ke =0.031 +0.002 and Ite =3.19+0.05. Numer-
ical estimates of IIIe for unrestricted LA, even though
disparate [22], are near our prediction.

In summary, we have shown here that closed SAS with

arbitrary genus behave like LA at p=0, in spite of the
presence of a scaling field with dimension y=d=3.
Since the singular quantities turn out to be independent
of this field, the interiors of SAS should not be dense.
This redundancy mechanism should operate whenever the
critical behavior of a geometrical object can be explained
in terms of a model constituting a sort of shrunk version

of the original one. Finally, we found, consistent with

LA, evidence for collapse of SAS to a dense phase at high

enough handle fugacity. We located the 8 point for a re-
stricted cycle LA in d =3 and conjectured ve= —,', Ite = I,
and Oe= 2, even for unrestricted LA.
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