
VOLUME 69, NUMBER 25 PHYSICAL REVIEW LETTERS 21 DECEMBER 1992

Diphotons in a Nonlinear Fabry-Perot Resonator: Bound States of
Interacting Photons in an Optical "Quantum Wire"
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We propose a high-g Fabry-Perot resonator with cylindrical mirrors, operating near fundamental

mode and filled with an alkali vapor, as the photonic analog to the electronic quantum wire. The inter-
nal photons constitute a 1D Bose gas with pairwise interactions. We solve for the two-photon bound

state which determines a resonance for the two-photon transmission function. Emphasis is placed on the
experimental feasibility of observing these quasiparticles.
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Lower-dimensional fermion systems have been inten-

sively investigated in connection with electronic proper-
ties of solid-state materials, e.g., quantum dots, quantum
wires, and quantum wells [I]. We extend the notion of
dimensional reduction from fermionic to bosonic systems

by proposing a realization of the optical quantum wire

consisting of a high-Q cavity with cylindrical mirrors.
The resonant cavity enhances the characteristic field

strength of vacuum fluctuations, so that light in such a
"quantum wire" filled with a nonlinear medium consti-
tutes an experimentally realizable interacting ID photon

gas. When the interaction is attractive, photonic bound

states can appear in the many-body system. We investi-

gate the simplest case of the two-photon bound state, or
"diphoton" [2].

We consider a Kerr medium in which classical evolu-

tion of a light wave is described by the nonlinear

Schrodinger equation (NLSE). This equation has a rich

variety of soliton solutions, but we will concentrate on

self-trapping in one transverse dimension, in which linear
diffraction is compensated by nonlinear self-focusing to
yield a stable beam whose transverse intensity profile is

constant with propagation [3]. In a traveling-wave con-

figuration, these solitons have been observed in liquid car-
bon disulfide [4], glasses [5], and semiconductors [6],
with promise for application to all-optical data process-
ing.

Quantization of the ID NLSE produces a theory of a
nonrelativistic 1D Bose gas with pairwise interactions via
delta-function potentials that can be either attractive or
repulsive [7]. Exact energy eigenstates can be construct-
ed using the Bethe Ansatz, of which the diphoton is the
simplest example. One manifestation of this Bose gas is
the quantum field theory associated with the optical fiber
temporal soliton. Lai and Haus [8] and Wright [9] stud-
ied this problem in the large photon-number limit to ex-
amine corrections to the classical "bright" soliton by vac-
uum fluctuations. In this quasiclassical limit the vacuum
fluctuations can become squeezed [10]. In the low

photon-number limit Yurke and Potasek [11] analyzed
the repulsive Bose gas associated with the "dark soliton, "
and predicted photon antibunching. However, because
the nonlinearity is extremely small in silica fibers, experi-
mental observation of interactive quantum effects in this
regime is not feasible.

Experimental observation of the interacting Bose gas in

the low photon-number limit requires an extremely large
nonlinearity and strong spatial confinement of the pho-
tons. In a standing-wave geometry, the small bandwidth
of the field allows near resonant excitation of an atomic
vapor to produce a large nonlinearity, while simultane-

ously the field strength can be enhanced by confining the
photons in a small volume of space. This dual resonant
enhancement of the material response and of the field

strength provides experimental access to the quantum
field theory of nonlinear optics. By contrast, in a travel-
ing-wave device such as an optical fiber or a planar
waveguide (the configuration considered in our previous
work [2]), enhancement of the field strength requires use
of a broadband (short duration) pulse, which reduces the
nonlinearity by dispersive effects. Thus optical wave-

guides are not good candidates for interactive quantum
wires or wells since the photon-photon coupling is negligi-

bly small.
The natural geometry we are led to is a high-Q Fabry-

Perot cavity with cylindrical mirrors, filled with an alkali
vapor, e.g., cesium, and operating near the fundamental
mode. This geometry locks out the dynamics in the longi-
tudinal dimension (z), as well as one of the transverse di-
mensions (y), and leaves a continuum of modes in the
remaining transverse dimension (x) (see Fig. 1). Such
cavities are now realizable with the development of ul-

trahigh reflectivity, low-loss dielectric layered mirrors,
with a total loss coefficient (including scattering and ab-
sorption) X=1.6X 10 [12]. High-Q cavities have been
used to observe cavity QED effects at optical frequencies
in the strong coupling regime [13], such as optical bista-
bility [14] and vacuum Rabi splitting [15]. We modify
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cited mode is equivalent to that for a nonrelativistic gas
of massive bosons, with an effective mass on the order of
hto/c, and pairwise attractive delta-function interactions
between the photons, arising from the exchange of virtual
atomic excitations [2]. When imperfect reflectivity and

absorption in the vapor are taken into account, the dipho-
ton is interpreted as a two-photon Fabry-Perot transmis-
sion resonance, which is broadened by the cavity line-

width.
The classical dynamics for the slowly varying electric

field envelope for one polarization is obtained from the
ansatz

FIG. 1. Schematic of the nonlinear Fabry-Perot resonator
(NLFP) used tp observe the dipboton [(a) viewed in the x-z
plane and (b) in the y-z plane (not drawn to scale)]. The
NLFP consists of one planar mirror and one cylindrical mirror
with radius of curvature R and diameter D, filled with Cs vapor.
The Gaussian mode is sketched in (b). Radiation from a diode
laser is tuned above the D2 resonance, attenuated, and coupled
into the NLFP by cylindrical lens Ll. The diphoton is a reso-
nance in the two-photon transmission function, with relative-
coordinate wave function shown in (a). Slit Sl filters the un-
bound component, and the remaining photons are detected in

coincidence as a function of the spacing of detectors D] and D2.
The resulting Lorentzian-squared two-point correlation function
is sketched in (a).

this system by (1) exciting the atomic vapor off resonance
so that it acts as a passive Kerr medium, self-focusing
when excited above, and self-defocusing when excited
below resonance, and by (2) using cylindrical mirrors
with wavelength-scale spacing, rather than spherical mir-

rors, to obtain a 1D quantum field. As an aside, we note
that a Fabry-Perot cavity with planar mirrors operating
in the fundamental longitudinal mode is the optical
equivalent of a quantum well, providing a means to study
the dynamics of the interacting 2D Bose gas. The
equivalence of these nonlinear optical field theories to
theories for interacting bosons in condensed matter sys-

tems in one or two dimensions provides intriguing possi-
bilities for optical experiments to test predictions made
for a dilute Bose gas [16]. In contrast to experiments
conducted in superfluid He films, the photonic system al-

lows experimental control over the interaction coupling
strength and does not require the use of low temperature
techniques.

We study the experimental feasibility of detecting the
diphoton by the following approach. We first consider
solutions inside a perfectly reflecting hemicylindrical cav-
ity (i.e. , there is one planar mirror and one cylindrical
mirror; see Fig. 1), and treat the Cs vapor as a lossless
self-focusing Kerr medium. Because the cavity mode
spacing is much larger than the bandwidth of the highly
resonant g nonlinearity, there is negligible photon-
photon scattering into initially unoccupied modes. The
quantum theory for the slowly varying envelope of the ex-

E(x, t ) =Re 4 (x, t )p(y, z ) exp( —i topt )I .

Here

Ly
y(y, z) =

w(z)
y' Inz

exp — sin +
w(z) 2 2R(z) L,

(2)

8(x, t ) =4(2tr) ' ' Np

LyL,
y(x, t ), (4)

so that, to lowest order in the paraxial approximation, the
energy in the empty cavity is

U=
~ cavity

E +B
8n

2
Qv t

=&top J lyl dx+ J dx
2kp Bx

In this approximation, the quantum field theory is for-
mally equivalent to a nonrelativistic many-body theory
for the complex scalar field y, which satisfies the stan-
dard Bose equal-time commutation relations, [i'(x, t),
iieet(x', t)] =8(x —x') [18]. The energy Eq. (5) is the
free-field Hamiltonian, with the first term playing the
role of the rest mass energy, and the second the kinetic
energy, with effective mass m =Avg/kp= htop/c . We
follow the dynamics of the envelope field y in the "en-
velope picture" [19] in which the operators evolve accord-
ing to the carrier wave Hamiltonian [the "rest mass"

is a cylindrical Gaussian mode, with w(z) and R(z) the
usual local beam radius and wave-front radius of curva-
ture, respectively [17]. A narrow bandwidth envelope al-

lows the material to respond adiabatically, so the propa-
gation equation in the paraxial (slowly varying envelope)
approximation is the NLSE,

a~ ' a'e
vg 'dt 2kp gx2 c

where the nonlinear index coefficient is n2=3trgt ~/2np,

and I is a mode overlap factor [9]. For operation near
the fundamental mode L, ((kpLy and I = 348.

To quantize the field we rescale the envelope relative to
the vacuum fluctuation amplitude inside the cavity,

~ l/2
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term in Eq. (S), which cancels the rapid oscillation of the carrier wave exp( —iroot) in Eq. (1)],and the states evolve by
the remaining slow terms. The interaction Hamiltonian is chosen so that the Heisenberg equations of motion reduce to

the NLSE in the classical limit. The normally ordered envelope Hamiltonian satisfying these conditions is

ft' Byt By G
dx dx/ dx2 y (x/) y (x2)8(x] —x2) y(x/) y(x2),2m4 Bx Bx 2 4

(6a)

u(x) —x,) -42d exp— X~ —X2

2
(7a)

X'L»L,

m(t 48K n2ftroo
(7b)

where vs=c/no= c, for an alkali vapor detuned suffi-

ciently from resonance. The binding energy is

mG
Eg = ft round,

4 2
(8a)

(8b)
dL»L,

where we have identified the binding energy with the

effective nonlinear index shift of the diphoton hand, Eq.
(81 ).

Production and detection of these quasiparticles de-

pends crucially on the material response. Cs vapor is an

excellent candidate for the nonlinear medium due to the

large oscillator strength of the D2 line, and high vapor

pressure at room temperature. When tuning close to res-

onance to achieve large nonlinearities, absorption in the

vapor dominates the Q of the cavity. The reduction of Q
leads to a larger cavity linewidth which poses two possible

problems: (1) The diphoton resonance may overlap with

the continuum of unbound states; (2) the diphoton width

may be larger than the detuning (which dominates the

width of the material response), thus invalidating the adi-

abatic response susceptibility model. Problem (1) may be

overcome by additional spatial filtering of the output, but

problem (2) determines the optimal range of detunings

by requiring that the linear absorptivity a be small (cavi-

ty linewidth narrow) while the nonlinear index n2 is still

large. Figure 2 shows plots of n2 and a for the D2 line of
Cs. The relative locations of the "knees" of these curves

show that one can obtain large nonlinearities with small

absorption by detuning above resonance near the knee of

where the coupling constant

vs (@cop)'n26=12++ '
c LyL,

varies directly with n2 and inversely with the confinement
area L»L, . Solving for the stationary states of H,

„„
in the

two-body sector is equivalent, after separating out the
free center-of-mass motion, to a 1D Schrodinger equation
for a reduced particle with an attractive delta-function
potential at the origin. The sole bound state has the wave

function

L the Doppler-broadened n2 curve. The model used to gen-
erate these curves includes the hyperfine structure of Cs;
it will be presented elsewhere. A typical operating point
is Av=1.9&hvo =780 MHz (above resonance), which
yields n2 7.S && 10 esu 6.3 & 10 cm /W, and a

6.5 x 10 cm
Finally, we consider the design of the cavity. For ease

of alignment, we propose to use a hemicylindrical cavity.
Tight focusing in the y direction and closely spaced mir-

rors will ensure maximum confinement of the fields. In

Fig. I the dimension D, the spacing L„and the radius of
curvature R are related by D 2(2L,R)'/ for L, ((R.
For D =1 mm and L, =3k/2, R =1.2x10'X =10 cm, and

the transverse mode spot size is L»=12K=10 pm. The
longitudinal and transverse mode spacings are, respective-

ly, bv, =c/2L, 1.2&10' Hz and bv» =c)/4»r L»
=7x10' Hz; both spacings are much larger than the
bandwidth of the resonant nonlinearity. With the mirrors
used by Rempe et al. [12], the cavity quality factor is

Q=roo/c(a+X/L, ) 10, with a linewidth bv„„=vo/Q
=370 MHz. Since this linewidth is smaller than the de-

tuning, the suceptibility model is acceptable.
For these parameters the diphoton has a spatial width

d=62 pm, and binding energy Ed/h 430 MHz. Be-
cause of the finite lifetime r =Q/coo=0. 4 ns, the two-

photon eigenstates have a linewidth on the order of

5
C
Ul0

I
t I

2

FIG. 2. &lots of the nonlinear index coefficient n2 (solid
curve with values on the left-hand axis in cm~/W) and linear
absorption coefficient a (dashed curve with values on the right-
hand axis in cm ) vs the detuning (above the 6P3g2F 5 excit-
ed state) in units of the Doppler width hvD, for Cs vapor at
T =3SO K, N 2.7 x 10' cm, when pumping out of the
6S]y2F 4 ground state. Contributions from all other allowed

6Py2 hyperfine levels, including interference effects, have been
included. The vertical dashed line represents the operating
point h, v 1.9h, vD used in the text.
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Bv„„=370MHz. A schematic diphoton detection exper-
iment is depicted in Fig. 1. Coherent radiation from a
tunable source, such as a diode laser, is incident on the
quantum wire. By attenuating the power so that, on

average, there is less than one photon in the cavity at a
given time, the probability of occupation of the mode by
more than two photons is rendered negligible. Coin-
cidence counting of the photons measures the steady-state
two-photon spatial correlation function. For this purpose,
the quantum wire can be viewed as a filter for the two-
photon eigenstates of H,„„[Eq.(6a)l, passing those states
which satisfy the energy conservation condition,

far-field spatial correlation function will be a squared
Lorentzian [the absolute square of the Fourier transform
of u(xi —x2), Eq. (7a)] which falls off algebraically as
the fourth power of the relative distance between detec-
tors D] and D2. This is the characteristic signature of the
diphoton.

We thank E. M. Wright and H. L. Morrison for stimu-
lating discussions. I.H. D. and R.Y.C. acknowledge sup-
port by ONR under Grant No. N00014-90-J-1259, and
3.C.G. by the U.S. Department of Energy at the Law-
rence Livermore National Laboratory under Contract
No. W-7405-Eng-48.

AK
2' toinjected 2&too+ +Eret ~ 0(~~vcav) ~i

4m
(9)

where A, K is the center-of-mass momentum and E„~is
the energy of the relative motion. When the injected sig-
nal is tuned below the empty-cavity resonance frequency
by half the bound-state energy (i.e., co;„„=tooEd/2h—),
then in the limit of zero cavity linewidth it follows from

Eq. (9) that the quantum wire will reject all states except
diphotons with K=O. Rejection of the unbound com-
ponents can still be achieved for small but nonzero cavity
linewidth, because of the energy gap between the dipho-
ton and the continuum. However, when the cavity line-
width is on the order of the diphoton "ionization" energy,
as in the system we have analyzed, there is substantial
overlap between the diphoton resonance and the continu-
um. The resulting spurious counts can be reduced by ad-
ditional spatial filtering. Note that when two photons
make successive round trips in the cavity, the diphoton
component maintains its spatial profile, whereas the un-

bound component diffuses from the initial focal spot. In
an unfolded cavity picture, this is equivalent to the famil-
iar statement that the transverse profile of the diphoton is

unchanged by propagation, while the unbound component
diffracts. To estimate this effect, we calculate the time
for the variance (hx) of the unbound component to
spread, as a free wave packet, to twice an initial value of
Ax=d; the result is t,tt„„d 242trd /ck=0. 13 ns. Thus,
within the cavity lifetime (0.4 ns) the unbound com-
ponent spreads and becomes small over relative distances
on the order of the diphoton width; therefore it can be
filtered from the coincidence counts by an exit aperture
slightly larger than d. The photons are detected in coin-
cidence in the far field of lens L2, which Fourier trans-
forms the correlation function. If the detector resolution
is shorter than the cavity lifetime (i.e., resolution better
than 0.4 ns, which has been demonstrated [20]), the

[I] H. Haug and S. W. Koch, Quantum Theory of the Opti
cal and Electronic Properties of Semiconductors (World
Scientific, New Jersey, 1990).

[2] R. Y. Chiao, I. H. Deutsch, and J. C. Garrison, Phys.
Rev. Lett. 67, 1399 (1991).

[3] R. Y. Chiao, E. Garmire, and C. H. Townes, Phys. Rev.
Lett. 13, 479 (1964).

[4] A. Barthelemy, S. Maneuf, and C. Froehly, Opt. Com-
mun. 55, 201 (1985).

[5] J. S. Aitchinson et al. , Opt. Lett. 15, 471 (1990).
[6] G. R. Allan et al. , Opt. Lett. 16, 157 (1991).
[7] C. R. Nohl, Ann. Phys. (N. Y.) 96, 234 (1976).
[8] Y. Lai and H. A. Haus, Phys. Rev. A 40, 844 (1989); 40,

1138 (1989).
[9] E. M. Wright, Phys. Rev. A 43, 3836 (1991).

[10] P. D. Drummond and S. J. Carter, J. Opt. Soc. Am. B 4,
1565 (1987); P. D. Drummond, S. J. Carter, and R. M.
Shelby, Opt. Lett. 14, 373 (1989); P. D. Drummond and
S. J. Carter, Phys. Rev. A 42, 2966 (1990); M. Rosen-
bluth and R. M. Shelby, Phys. Rev. A 34, 3974 (1986).

[11] B. Yurke and M. J. Potasek, J. Opt. Soc. Am. B 6, 1227
(1989).

[12] G. Rempe et al , Opt. Lett. 1. 7, 363 (1991).
[13] E. A. Hinds, Adv. At. Mol. Opt. Phys. 28, 237 (1991).
[14] G. Rempe et al. , Phys. Rev. Lett. 67, 1727 (1991).
[15] R. J. Thompson et al. , Phys. Rev. Lett. 68, 1132 (1992).
[16] R. Y. Chiao, I. H. Deutsch, J. C. Garrison, and E. M.

Wright, in "Serge Ahkmanov: A Memorial Volume,
"

edited by H. Walther (Adam-Hilger, Bristol, to be pub-
lished).

[17] A. Yariv, Quantum Electronics (Wiley, New York,
1989), 3rd ed. , p. 118.

[18] I. H. Deutsch and J. C. Garrison, Phys. Rev. A 43, 2498
(1991).

[19] I. H. Deutsch and J. C. Garrison, Opt. Commun. 86, 311
(i99i).

[20] S. Cova, A. Longoni, and G. Ripamonti, IEEE Trans.
Nucl. Sci. 29, 599 (1982).

3630




