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Realistic Hadronic Matrix Element Approach to Color Transparency
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Color transparency occurs if a small-sized wave packet, formed in a high momentum transfer process,

escapes the nucleus before expanding. The time required for the expansion depends on the masses of the

baryonic components of the wave packet. Measured proton diffractive dissociation and electron deep in-

elastic scattering cross sections are used to examine and severely constrain the relevant masses. These

constraints allow significant color transparency effects to occur at experimentally accessible momentum

transfers.

PACS numbers: 24.85.+p, 12.38.Qk, 25.30.Fj

Color transparency (CT) is the postulated [1,2] ab-
sence of final- (or initial-) state interactions caused by
the cancellation of color fields of a system of quarks and

gluons with small spatial separation. For example, sup-

pose an electron impinges on a nucleus knocking out a
proton at high momentum transfer. The consequence of
color transparency is that there is no exponential loss of
fiux as the ejected particle propagates through the nu-

cleus. Thus, the usually "black" nucleus becomes trans-
parent. We examine only processes for which the funda-
mental reaction is elastic, or at least a two-body reaction.
The nuclear excitation energy must be known well

enough to ensure that no extra pions are created.
The existence of color transparency depends on (1)

forming a small-sized wave packet in a high momentum

transfer (Q) reaction, (2) the interaction between such a
small object and nucleons being suppressed (color neu-

trality or screening), and (3) the wave packet escaping
the nucleus while still small. That color neutrality
(screening) causes the cross section of small-sized color
singlet configurations with hadrons to be small seems well

known [3-6]. So we take item (2) as given. The others
require discussion.

Asymptotic perturbative QCD predicts the wave pack-
et size to be —1/Q. At nonasymptotic kinematics, in-

cluding the effects of gluon radiation (Sudakov suppres-
sion) reduces effects of well separated quarks [7] and

may lead to a falloff more rapid than 1/Q [8]. But, the
minimum value of Q required to form a small wave pack-
et is not known, and unexpected enhancements may occur
if the wave packet is not small [9]. It is also true that at
experimentally available energies, the small object ex-
pands in its motion through the nucleus. Thus final-state
interactions are suppressed, but not zero [10-12].

Tantalizing but nondefinitive evidence has been ob-

tained in a pioneering (p,pp) experiment at Brookhaven
National Laboratory (BNL) [13]. Color transparency is

the object of current searches using electron [14) and

proton beams [13]. The existence of color transparency
has not yet been demonstrated, and it would be useful to
improve the reliability of CT predictions. Here we use

apparently unrelated diffractive dissociation (DD) and

deep inelastic scattering (DIS) data to probe the ex-

istence of the small-sized wave packet and to constrain
the expansion process.

To be specific, consider the high Q quasielastic

(e,e'p) reaction. A wave packet is formed when a bound

proton absorbs the virtual photon. This wave packet is

dubbed [4] a pointlike configuration (PLC) in an optimis-
tic notation. Thus IPLC) TH(g ) IN), where the hard

photon absorption operator is denoted as TH(g ). Our
notation is that IN) represents a nucleon at rest, and

IN(q)) represents one of momentum q. Then the form

factor is F(Q ) =(N(q) 1TH(Q ) IN).
We assume that for some large Q the PLC has no soft

interaction U with the surrounding nucleons. Then [6]

O=UT„(g') IN). (1)

This is an extreme assumption, and an interesting partial
transparency could occur even if the left-hand side were

as large as half that predicted by taking TH(Q )IN) to
be a normal-sized object. Here we examine Et]. (1).

In the optical approximation U= 4tri Imfp, in which-
f represents the PLC-nucleon interaction as a sum of
quark-nucleon scattering operators and p is the density of
target nucleons. Only the dominant imaginary part of
f is kept, and the nucleonic matrix element (N I4tr

xlmfIN) =o~, the proton-nucleon total cross section.
Taking the nucleon matrix element of Eq. (I) and using
completeness yields

0- trp+X,dMx(N (q)14tr Imf I a, Mx), (a,M~21TH(g') IN)
(2a)

F g2

in which an intermediate state of mass M~ has a set of quantum numbers (including multiplicity) a. It is useful to
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define the integral term of Eq. (2a) as l(Q ). Then

~, = —l(g') . (2b)

The propagating wave packet is described by the Green s operator acting on !PLC). Expanding in a complete set of
baryon states X, allows one to describe the propagating wave packet as a sum of terms of the form GxTH(Q )!N),
where GL is the eikonal propagator. Thus as the PLC propagates through a length I, each baryonic component L ac-
quires a phase factor e' with px=p +Mtv —Mx. Here p, px, and l are magnitudes of three-vectors. The different
phases upset the cancellation inherent in Eq. (I) so interactions do occur. To include these, note that the first-order
scattering term is the sum (integral) of nucleonic matrix elements of UGxTH. The resulting scattering term is similar to
the corresponding standard Glauber result (here Glauber always refers to calculations of nuclear distortions) except that
a new quantity, defined as o,ir, appears instead of o~ [11,15]:

o Ir(l) —= tr +g J dM'(N(q)!4tr lmf! tt, M')e'
F(g') (3)

Equation (2a) follows from the assumption that the
PLC does not interact, but its form as a sum rule involv-

ing hadronic matrix elements may seem surprising. It is

therefore encouraging that the vanishing left-hand side
does occur in the model of Jennings and Miller (JM)
[11]. The consequence of their model is that Eq. (3) ap-

pears as

JM(l) ~ (I /IPi PIt) (4)

where the subscript 1 refers to the single excited state
contributing to the integral term in Eq. (3). The quantity

(p —
p I ) = (M I

—Mtv)/2p for large p, so that (M I—Mtv) '—= rII plays the role of a time scale for PLC ex-
pansion. If ro« I (a nuclear radius), the two terms in

Eq. (4) cancel and transparency occurs; otherwise, final-
state interactions occur.

The previous two-state model has some desirable
features, but it is not realistic because a continuum of nu-
cleon resonances and multipion states are excited in

pp pL reactions. We therefore use experimental ob-
servations of the matrix elements appearing in Eqs. (2)
and (3). Thus

I/2

!(N(q)!4~f!a, Mx)!-
dt dMx

d2 Dls
!(~M'!TH(g')I»I =

dQdMx
(s)

where DD (DIS) stands for diffractive dissociation (deep
inelastic scattering). In DD a fast proton breaks into the
state a, Mx without exciting the bound target nucleon.
The matrix element of TH is obtained by dividing the
DIS cross section by the Mott cross section, 0~.

The above are cross sections for final states, a, M~.
These can be related [16,17] to cross sections obtained by
summing over a by defining probabilities P ' ' (a):

DD, DIS(~) pDD, DIS( M2)d DD, DIS

where Q, P ' ' (a,Mx) =1. Measurements [16,17]

~ (M+M, )'

where M and M are nucleon and pion masses. The fac-
tor W2(x, g )/2M arises from relating the matrix ele-
ment of TH to measured DIS cross sections for relevant
experimental kinematics where W2 is more important
than Wi, F(Q ) is a linear combination of electric and

magnetic form factors evaluated at the same kinematics.
We now evaluate l,„(g ) and compare it to measured

values of cd [18]. We use Atwood's [19] parametriza-
tion of W2(x, g ) and Goulianos's [20] tabulation of
d o /dtdMx at t = —0.047 GeV . The factor

g [pDD( M2)pDIS( M2)] I/2

show that P ' (a) is a peaked but broad function of
multiplicities.

Evaluating the integrals of Eqs. (2),(3) using only data
requires knowledge of the measurable relative phases of
the matrix elements; these are presently unknown. Nev-

ertheless, we can see if existing data rule out Eq. (2).
This is because the integral term has a lower (negative)
limit, obtained by taking each product of matrix elements
to be negative. If this limit was much less (in magnitude)
than o~ color transparency would be ruled out. The in-

tegral —l(g ) of Eq. (2b) can be written as

[p DD(& M 2 )p DIS(& M 2 )] I/2
X & X l ( 2)

F(g')

!
is replaced by the function g(Mx):2

g(Mx) =g[P (a, Mx)P ' (a,Mx)l ' XPhase(a), (7)

where Phase(tt) is the relative phase of the matrix ele-
ments. This includes the eff'ects of the currently unknown

phases. Taking the probability functions P,P ' from
Ref. [16] for DIS and Ref. [17] for diffractive dissocia-
tion we estimate the sum over a to be approximately D.6
for low values of Mx. Assuming g(Mx) has a sharp
cutoA at M& =M, , we evaluate Im, „by integrating over

M~ up to this cutoA.
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With these inputs 1,„(Q ) is equal to a~ for values of
M, between 2.4 and 2.6 GeV, depending slightly on s
for Q ~1 GeV . These values of M, do not exceed the
bound required for diAractive dissociation to occur nor
lead to highly virtual states. For partial transparency a
lower value of M, would be obtained. However, even the
extreme condition of Eq. (I) can be satisfied with a
reasonably small value of M, . Thus existing DD and
DIS data allow color transparency to occur.

The above treatment of the integrand is now used to
evaluate a,a of Eq. (4). This could be unrealistic: Not
all of the products of matrix elements are negative and a
sharp cutoff' of the DD cross section is not expected. It is
reasonable to try a form g(Mg) =(M/M~) & (power law)
instead of the previously used g(Mx) =8(M, —Mx)0.6
(sharp cutoff). Values of P ranging from 2.4 to 4.0 allow
the sum-rule relation (2) to be satisfied at each value of
Q . The use of the power-law falloff allows high-mass
Mg states (Mx = Q ) to participate in the integral
without emphasizing the importance of highly virtual
states.

The results for a,g at s =13 GeV are shown in Fig. 1

(for electron scattering s=Q +4M ). If g(Mg) is
given by the power falloff, o,a(1)-l for small I as in Ref.
[10]. If the sharp cutoff is used, a,ti(l)-l for small
values of I as in Ref. [11]. a,& is generally smaller with
the sharp cutoff'because with M, -2.2 GeV large values
of M~ do not appear. Thus p~ —p is prevented from
becoming large, and the cancellation between the two
terms of Eq. (4) is not disturbed much by the phase fac-
tor (p~ —p)I.

We now turn to predicting nuclear color transparency.
We use a, fr to compute (e,e',p) cross sections to be mea-
sured at SLAC [13]. The ratios of cross sections (or
transparency) 7'=a/cr " are shown in Fig. 2. By
~soRN we mean just Z times the free cross section. The
quantities a are (e,e'p) differential cross sections in-

tegrated over the scattering angles of the outgoing proton.
(See Ref. [11]for details. ) Full color transparency corre-
sponds to a ratio of unity. We want to know the energies
for which 7' approaches unity and for which it is substan-
tially greater than that obtained with the standard
Glauber treatment. Both choices of g(M~~) show that ob-
servable increases are obtained for values of q=~q~ as
low as 5 GeV/c, or Q =9 GeV/c . The results of using
the sharp cutoff' are very similar to those of using the
model of Ref. [10], with Mi =1.44 GeV. This follows
from the small value of M, .

The single published experiment aimed at observing
the eff'ects of color transparency is the BNL (p,pp) work
[13] at beam momenta pL ranging from 6 to 12 GeV/c.
The kinematics of the BNL experiment are such that the
basic pp elastic scattering occurs at a center-of-mass an-
gle of 90' if the target proton is at rest. Figure 3 shows
that the experimentally determined transparency T =da/
da " (ratio of nuclear to hydrogen cross section per
nucleon after removing the effects of nucleon motion) has

1.00

0.75

0.25

/
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0.0 2.01.0

i(fm)
FIG. 1. The real part of a,s(l)/a. Dashed line: sharp cutoff

g(M$); dotted line: Eq. (5) with M~ =1.44 GeV; dash-dotted
line: power law g(Mjf).

1.5

unexpected oscillations with energy. Also shown is the
energy-independent expectation of standard Glauber
theory. This independence survived the examinations of
Refs. [21] and [22].

One possibility, suggested by Ralston and Pire [23], is
that the energy dependence is caused by an interference
between a hard amplitude, which produces a small object,
and a soft one (the Landshoff process), which does not.
Kopeliovich and Zakharov [12] and Jennings and Miller
[24] extended this idea by including effects of the expan-
sion of the small object. Another mechanism is that of
Brodsky and de Teramond [25] in which the two-baryon
system couples to charmed quarks [there is a small (6q)
and a large (6q, cc) object]. These two well-motivated
ideas, when combined with the expansion technique of
Ref. [24], do not reproduce the data satisfactorily.

Here we see that using o,a of Eq. (3) leads to a more
accurate description of the data. To approximate
TH(Q ) by 8'i is to assume that the proton-proton
high-Q data vary in a manner similar to Wz. This is
reasonable because in each case the reaction starts with a
quark absorbing high momentum. The Ralston-Pire
mechanism is evaluated using a recent fit by Carlson,
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FIG. 2. The transparency 7' for the (e,e'p) reaction. The
solid line represents the standard Glauber calculation (a,ff

=ai, ). The other curves are defined in Fig. l.
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FIG. 3. Energy dependence of the transparency 7. The data
points are from Carroll et al. [13]. The area shaded vertically is

obtained from the mechanism of Ref. [23] and amplitude of
Ref. [26]. The area shaded horizontally is obtained from the
mechanism of Ref. [25]. In each case the upper bound uses the

sharp cutoff for g(Mg) and the lower bound a power law. The
solid curve assumes no color transparency.
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Chachkhunashvili, and Myhrer [26] of the hard pp
scattering data. Both the usual quark-counting and

Landshoff amplitudes are included in their description of
A„„and the differential cross sections. The results for the
mechanisms of Refs. [23] and [25] are shown in Fig. 3.
Both the power-law and sharp cutoff' versions of g(MA)
are used. These represent lower and upper limits to the
predictions, and obtain a range of variation by shading
the area between these curves. The enhancement at
about 4 GeV is a new consequence of the amplitude of
Ref. [26]. The Brodsky-de Teramond model along with

the sharp cutoff g(MA) seems closest to the data, but no

calculation achieves good agreement. One can say that
the general trend is reproduced. The strong dependence
on g(Mg) shows that at least one measurement of color
transparency is needed to determine this function. The
new experiment [14] designed for higher energies and

greater accuracy will certainly help.
Measured diff'ractive dissociation and deep inelastic

scattering data lend support to the idea that color tran-

sparency occurs. In fact we have shown that there exists
a set of hadronic matrix elements that reproduce the DD
and DIS data and also give color transparency. This is

our strongest conclusion. The formation of a PLC is al-

lowed, and its expansion is not too rapid. %e eagerly
await the new experimental results [13,14].
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