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Entropy of a Classical Stochastic Field and Cosmological Perturbations
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We propose a general definition of nonequilibrium entropy of a classical stochastic field. As an exam-
ple of particular interest in cosmo1ogy we apply this definition to compute the entropy of density pertur-
bations in an inflationary Universe. On the scales of structures in the Universe, the entropy of density
perturbations dominates over the statistical fluctuations of the entropy of cosmic microwave photons, in-

dicating the relevance of the entropy of density fluctuations for structure formation.
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(l) Introduction Th.—e concept of entropy contains
relevant information about a dynamical system. In sys-
tems with a finite number of degrees of freedom there is a
natural way to define entropy, even if the system is out of
thermal equilibrium. We are interested in systems with

infinitely. many degrees of freedom and which can be de-
scribed by a stochastic Gaussian field. In this Letter, we

use Shannon's [ll general definition of entropy to calcu-
late the nonequilibrium entropy of a stochastic Gaussian
field.

An issue of considerable interest is the development of
a consistent definition of entropy in general relativity and
cosmology. There have been some key results in this
area. The observation that all information about a parti-
cle crossing the Schwarzschild horizon is lost led Beken-
stein [2] and Hawking [3] to their famous formula for the
entropy of a black hole. Penrose [4] suggested that it

may be possible to realize the second law of thermo-
dynamics in cosmology by assigning an entropy to the
gravitational field itself. He conjectured that the plausi-
ble definition of entropy might be "some integral" of the

Weyl tensor squared, and that the Universe starts in a

state of minimal gravitational entropy. In t.his picture
structure formation and the second law of thermodynam-
ics are reconciled, since gravitational clustering leads to
an increase in the Weyl tensor, thus generating gravita-
tional entropy. The entropy of gravitational waves was
studied in Ref. [5], and there has also been a lot of work

[6] on the entropy of particles produced in strong gravita-
tional fields.

In this Letter we use our formula for the nonequilibri-
um entropy of a stochastic Gaussian field to propose a

new approach to the problem of gravitational entropy in

cosmology. The formalism is based on separating the en-
tire system of gravitational plus rnatter fields into back-
ground fields (chosen to have high space-time sym-
metries) and linearized fluctuating fields; the latter are
the stochastic fields to which we apply our general defi-
nition of entropy.

It has been demonstrated that the dynamics of pertur-
bations can be reduced to the dynamics of a single scalar
field (which comprises in a self-consistent manner both
scalar and/or tensor gravitational field perturbaiions and

matter field fluctuations) in the classical space-time back-
ground (for a recent review see Ref. [7]). The evolution
of the background field is completely specified; this means
it carries no entropy. On the other hand, the fluctuating
field carries significant entropy. This statement needs

justification.
In order to obtain growth of entropy, it is necessary to

propose some kind of coarse graining in which some in-

formation is lost during the evolution. In this work, we

consider a free scalar field in an expanding space-time
background, in which there is abundant production of
perturbations by parametric amplification [8]. We as-
sume that there is a mechanism which generates stochas-
ticity in the phases of the perturbations produced during
the evolution. This mechanism is eA'ective for the field

modes within the horizon, and generates entropy in the
Auctuating field.

The Letter is organized in the following way. The next
section is devoted to the derivation of the formula for the
entropy of a stochastic Gaussian scalar field. Using this
formula, we then calculate (in Sec. 3) the entropy of
cosmological density perturbations. In Sec. 4 we hint at
some additional possible applications of the formula in

the context of cosmology.
(2) Entropy of classical geld We w. i—sh to consider

the entropy associated with a classical stochastic field.
For a given real scalar field p and its canonical momen-

t um z, there is a probability distribution functional
P [p, tr] defined over an infinite-dimensional space spanned

by functions 4, trI. The probabilistic definition of entropy
gives

S= —"P[v.n] lnP[v, tr]2)v Stt, (2. 1)

where the probability functional P[p, tr] is normalized to
unity. We assume a Gaussian process, i e., that the
knowledge of two-point correlation functions suSces to
completely specify the stochastic properties of the fields p
and tr. (Higher-order correlation functions can be then
given in terms of two-point correlations. )

I f the stochastic process is non-Gaussian, then the
Gaussian approximation may still be a good one, provided
corrections due to higher-order correlations are small.
An additional requirement is that correlations are of
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finite range. This is fulfilled in the cosmological setup,
because a natural cutoff for correlation is the horizon
scale.

The Gaussian approximation breaks down when the
perturbations grow nonlinear, and eA'ects of the non-
linearities (originating in the full theory) become signifi-
cant. In this case the corrections arising in the higher-
order correlation functions become important and need to
be incorporated in the probability distribution.

The definition of entropy in Eq. (1) can be applied to
cosmological perturbations in an expanding universe (see
Sec. 3), when the evolution of perturbations can be well
represented by a Hamiltonian of second order in p and z.
This means that the Gaussian character of the probability
distribution is preserved in the course of evolution.

We now sketch a derivation of the expression for entro-

py in terms of correlation functions. Assume that at
some time t the probability functional P(p, z] has a gen-
eral Gaussian form,

Pta, z] = exp —
„~

—[p(x)A(x, y)p(y)+z(x)8(x, y)z(y)+2+(x)C(x, y)z(x, y)]d xd y
1 ~1

(2.2)

where Ã is a normalization constant, and A, 8, and C are related to the two-point correlation functions in a way yet to
be determined. In a homogeneous space-time background, A, 8, and C are functions of x —

y only.
By a clever substitution, it is possible to bring Eq. (2.2) into a diagonal form, in which p and z are replaced by new

normal coordinates. It is then quite straightforward to evaluate the normalization factor A of Eq. (2.2),

Ã =Jdet2)(x —y),
where S can be expressed in terms of correlation functions,

(2.3)

(2.4))) —(v (x)z(z))(z(z)v (y)&].2)(x —y) =~ d'z[(v (x)v (z))(x(z)z(y

Using Eqs. (2.2) through (2.4), the expr
the entropy gives

n (2.1) foressio

(2.S)S =Trb(x —y)+In&.
The first term is an irrelevant constant. The relevant con-
tribution comes from the second term and can be rewrit-
ten as

(2.6)S= —,
' IndetS(x —y) .

The above equation is the main result of this section.
Equations (2.4) and (2.6) can be used to obtain the en-
tropy of any stochastic classical scalar field whose proba-
bility distribution can be well approximated by the
Gaussian probability distribution (2.2).

In order to calculate the determinant of $(x,y), one
needs to solve the eigenvalue problem associated with S.
Under quite general conditions (assuming 2) is of finite
support) and using the g-function regularization scheme,
it is possible to show [9] that this determinant can be ex-
pressed in terms of the spectral density 2)k, which is given

by the Fourier transform of 2)(x —y),

2)i,=— d'z e '" *2)(z)

(2.7)

and it is positive definite. The entropy then reads

d k 15 = V)I —InXli, .
(2x)' 2

(2.8)

The procedure to calculate the entropy of a classical
Gaussian field is now very simple. Given two-point corre-
lation functions, one calculates $(x —y) [Eq. (2.4)],
Fourier transforms it [Eq. (2.7)], and obtains the entropy

according to Eq. (2.8). We now apply this prescription to
an example which is of interest in cosmology.

(3) Entropy of cosmological perturbations. —In this
section we apply the method developed above to calculate
the entropy of cosmological density perturbations. This is
an example of relevance in cosmology, because it is likely
that the scalar density perturbations seed structures in

the Universe. We find that the entropy of scalar density
perturbations on large scales in the Universe is significant
when compared to the statistical fluctuations of the entro-

py of cosmic microwave photons on the same scales.
Before we present any calculations, we give a short

summary of the theory of density perturbations. Density
perturbations are scalar-type metric perturbations which
couple to energy density and pressure. For matter which
is in the form of a scalar field, or an ideal gas, it turns out
that density perturbations can be described in a self-
consistent manner in terms of a single gauge-invariant
scalar field y, which is a linear combination of scalar field
matter fluctuations (ideal gas density fluctuations) and
longitudinal metric fluctuations and whose dynamics is

given by a quadratic action. (For a comprehensive ac-
count of the gauge-invariant formalism of linear cosmo-
logical perturbation in Friedmann-Robertson-Walker
backgrounds, see Ref. [7]; for a pedagogical introduction,
see Ref. [10].)

Hence, assuming that the gauge-invariant field p is a
stochastic Gaussian field, we can calculate the entropy
associated with p using Eqs. (2.4) and (2.6), or equiva-
lently Eqs. (2.7) and (2.8). In order to accomplish
this, we need to know the two- int correlation functions
&p(x, t)w(y, t)1, (x(x, t)ir(y, t), and 4&(x, t)x(y, t)),
where z(x, t ) = f)p(x, r )I8t
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U(r) =S([e&])S([r„,v &]), (3.1)

where

As an example of a model in which the correlation
functions exhibit nontrivial behavior, we consider an ex-
panding universe with initial quantum fluctuations which
evolve into classical ones as a result of evolution. In this
case, particle pairs are produced via parametric ampli-
fication, i.e., via coupling of matter fields to the nontrivial
space-time background. Because of the generation of
perturbations, the correlation functions become time
dependent. Here we consider the inflationary universe
scenario in which there is abundant production of inho-
mogeneities.

The Hamiltonian governing the evolution of the single
scalar field p and momentum z is quadratic in p and z, so
that it is convenient to represent the evolution operator
U(t) in a form in which the effects of free evolution (R)
and interaction with the background (S) are separated.
U(t) is the product of the rotation operator % and the
two-mode squeeze operator S,

x([e.])= + x(e,),
1(,k )0

(3.2)
S(jr„,v J) = g S(r„,v „).

R,k„)0

The product gl, I, ) o is over half of the possible values of
momenta k (for definiteness, say k„&0). The rotation
angles 0|,=f'rat, (t')dt' are given in terms of the frequen-

cy coI, of mode k; rk, pp are the squeeze factor and phase,
respectively, and can be expressed in terms of parameters
of the Hamiltonian (see Ref. [11]). The two-mode
squeeze operator S(rl„pg) acts on the vacuum i0;„),
creating pairs of particles with momenta k and —k, so
that the total momentum of the pair is zero; hence
S(rl„pg) is a momentum conserving operator. The
operator S mathematically describes the process of para-
metric arnplification.

Now we can express the two-point correlation functions
of quantum operators p and z in terms of the parameters
of the squeezed state which is obtained as a result of the
evolution of the initial vacuum state i8;„) of cosmological
perturbations in an expanding universe. Simple, but
rather lengthy calculation gives [12]

(0;„iw(x,t)v (y, t)0;,) = e
d k

(2z) '
1

(2 sinh r ~+ 1) —sinh2r ~ cos2 roy dt —
Wt

2

2rog(t)-
(3.3)

$|,=sinh rl, (1+sinh rq) . (3.4)

The entropy density per mode is then [Eq. (2.6)]

sq=Sq/V= —,
'

InX)l, (3.5)

and 2)l, = n) =sinh rl, (for nq&) 1), where nq is the aver-
age number of particles in the k mode, whenever the no-
tion of particles can be defined.

where the frequencies col, and the squeeze factor rz
i

depend on time because of the nontrivial evolution of
the background. Similar expressions are obtained for
&0;„iz(x,t)n(y, t) i0;„) and &0;„iw(x, t)n(y, t) i0;„).

To associate entropy with the final state, we must
neglect some information. Typically, this will be infor-
mation which is very sensitive to any kind of perturba-
tion, either of the state or of the system. In our example,
the phases 2j col, dt wk w—ill depend sensitively on a per-
turbation, whereas the amplitudes will not. Hence, we

can coarse grain the system, average over the phases, and
replace the above correlation functions by reduced corre-
lation functions where the phase-dependent terms vanish.
The coarse graining leads to decoherence, which is a
necessary condition for the quantum to classical transi-
tion [13]. Provided there is decoherence and sinhrk )& 1,
then we can take the classical limit in which classical
correlation functions can be identified with quantum
expectation values, i.e, (p(x)p(y)) =(0;„iy(x)y(y)i0;„).
This issue is discussed in more detail in Ref. [9].

As a result we obtain for the spectral density of the
operator 2) (x —y)

sg-k sg= (I/A. )InSg. (3.6)

To demonstrate how the technique developed above
works, we now apply Eq. (3.5) to estimate the entropy of
cosmological perturbations produced during the infla-
tionary stage of a model of chaotic inflation [14]. The
simplest potential for the inflation field pl is V(pi )
= —,

' m pi, where m is the mass of the inflation, typically
of the order 10' GeV. Considering perturbations on
scales which enter the horizon late in the radiation era,
we obtain the following result for the entropy density of
perturbations on a typical scale iL~h-a/k (see Ref. [9]):

1 ~ph ~ph ~ph
si „— ln (ml) ln

t I
(3.7)

where f is the Planck length, t is the cosmological time,
and k~ is the typical wavelength of the cosmic microwave
background radiation. This formula is applicable for per-

An advantage of our formula for the entropy is that it
is independent of the definition of particles (and hence is

not subject to the ambiguities of particle notion in a non-
trivial space-time). Equation (3.5) can be applied even if
the notion of a particle is not well defined, e.g. , for inho-
mogeneities in a rnatter-dominated universe [7]. In cases
where the notion of a particle is well defined, the entropy
of Eq. (3.5) agrees with the usual expression in terms of
occupation numbers.

It is useful to define the entropy density sz per logarith-
mic wavelength X- I/k interval
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turbations which satisfy the condition t»1j,vh»A, „. The
contribution to the total entropy of galactic scale pertur-
bations (-1-100 Mpc) per corresponding galactic vol-

ume is S, i-k.~,is, i = 200-220. The entropy of gravita-
tional radiation can be estimated in the same manner (see
Ref. [9]).

Statistical fluctuations of cosmic microwave photons
are another potential source of inhomogeneities. Howev-
er, the entropy density of these fluctuations scales as

compared to the logarithmic dependence we found
for the entropy density of density perturbations. Hence,
on scales of galaxies, the entropy of gravitational pertur-
bations dominates over the statistical fluctuations of the
entropy of cosmic microwave photons. The total entropy
of cosmological fluctuations is, however, suppressed by a
factor (H/mpi) I (where H is the Hubble expansion rate
at the end of inflation) compared to that of the cosmic
microwave background. The dominance of the entropy of
gravitational perturbations on large scales is a sign of the
relevance of this entropy for structure formation. A fur-
ther application [9] of this entropy is in the context of a
collapsing universe.

It is worth noting that because of the weak (logarith-
mic) dependence of entropy per mode on the energy scale
m of the model, our conclusion remains valid for a wide
class of inflationary models.

(4) Discussion. —We derived a new formula for the en-

tropy of a stochastic Gaussian scalar field in terms of
two-point correlation functions. We then applied this re-
sult to the cosmologically relevant example of density
perturbations, using the formalism of linearized gauge-
invariant scalar perturbations about a homogeneous clas-
sical space-time and matter background. We found that
the entropy of the system (scalar gravitational metric
perturbations plus matter density fluctuations) grows as a
logarithm of the number of particles created as the
Universe expands. On the scales of large structures in

the Universe, the entropy of density perturbations in an
inflationary universe dominates over the entropy of sta-
tistical fluctuations of the cosmic microwave photons.

The formalism for calculation of entropy which we
developed in this Letter can be applied to any (cosmologi-
cal) problem, which can be reduced to the evolution of a
classical stochastic Gaussian field.

The treatment of the full (nonlinear) gravitational field
is still an open problem, and the corresponding formula
for entropy is yet to be constructed. It would be very in-
structive to demonstrate that the entropy of the gravita-
tional field continues to grow, even when the perturba-
tions become nonlinear.
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